Crowned Spur Gears: Methods for Generation and Tooth Contact Analysis—Part 2: Generation of the Pinion Tooth Surface by a Surface of Revolution

1988 ◽  
Vol 110 (3) ◽  
pp. 343-347 ◽  
Author(s):  
F. L. Litvin ◽  
J. Zhang ◽  
R. F. Handschuh

A method for generation of crowned pinion tooth surfaces using a surface of revolution is developed. The crowned pinion meshes with a regular involute gear and has a prescribed parabolic type of transmission errors when the gears operate in the aligned mode. When the gears are misaligned the transmission error remains parabolic with the maximum level still remaining very small (less than 0.34 arc second for the numerical examples). Tooth Contact Analysis (TCA) is used to simulate the conditions of meshing, determine the transmission error, and the bearing contact.

2010 ◽  
Vol 29-32 ◽  
pp. 1711-1716
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

A double direction modification with a grinding worm is applied on tooth surface of face gear drive. The surface equations of the rack cutter, shaper and grinding worm are derived respectively. Loaded tooth contact analysis (LTCA) with finite element method (FEM) is performed to investigate the meshing performance of face gear drive before modification and after modification. The modification by a grinding worm can obviously reduce the sensitivity of face gear drive to misalignment; the bending stress and the contact stress are reduced with avoiding edge contact; the load transmission error is reduced. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper, and the modification magnitude can be controlled freely. The investigation is illustrated with numerical examples.


Author(s):  
Y-C Chen ◽  
M-L Gu

This article investigated the contact behaviours of a modified curvilinear gear set for parallel-axis transmission, which exhibits a pre-designed parabolic transmission error (TE) and localized bearing contact. The proposed gear set is composed of a modified pinion with curvilinear teeth and an involute gear with curvilinear teeth. Tooth contact analysis enabled the authors to explore the influences of assembly errors and design parameters on TEs and contact ellipses of this gear set. It is observed that TEs were continuous and the contact ellipses were localized in the middle of the tooth flanks, even under assembly errors. Finite-element contact analysis was performed to study stress distributions under different design parameters. In addition, numerical examples are presented to demonstrate the contact characteristics of the modified curvilinear gear set.


2010 ◽  
Vol 44-47 ◽  
pp. 1948-1951
Author(s):  
Ning Zhao ◽  
Hui Guo

The coordinate systems for cutting face gears and for meshing of face gear drive with involute cylindrical pinion. The tooth surface equation of face gear with machining errors is deviated, such as change of shaft angle, change of shortest distance between face gear and cutter tool axes, helix angle of cutter tool. Tooth contact analysis applied in the paper considered with the alignment error of the driving system. The tooth contact path and the transmission error of the face gear drive were simulated through the tooth contact analysis for different alignment errors and machining errors. The simulation results indicate that all of the alignment errors and machining error don’t cause transmission error except helix angle error of the cutting tool. The errors will bring the shift of the contact path on gear teeth. The shift of bearing contact can be reduced by combination of different errors of alignment or machining.


Author(s):  
C H Wink ◽  
A L Serpa

In this paper tooth contact deviations from the plane of action and their effects on gear transmission error are investigated. Tooth contact deviations come from intentional modification of involute tooth surfaces such as tip and root profile relief; manufacturing errors such as adjacent pitch error, profile errors, misalignment and lead errors; and tooth elastic deflections under load, for example, bending and local contact deflections. Those deviations are usually neglected on gear tooth contact models. A procedure to calculate the static transmission error of spur and helical gears under loading is proposed. In the proposed procedure, contact analysis is carried out on the whole tooth surface, eliminating the usual assumption that tooth contact occurs only on the plane of action. Lead and profile modifications, manufacturing errors and tooth elastic deflections are considered in the calculation procedure. The method of influence coefficients is employed to calculate the tooth elastic deflections. Load distribution on gear meshing is determined using an iterative-incremental method. Results of some numerical examples of spur and helical gears are analysed and discussed. The results indicate that the tooth contact deviations from the plane of action can lead to imprecision on the gear transmission error calculation if they are not take into account. Therefore, the proposed procedure provides a more accurate calculation methodology of gear transmission error, since a global contact analysis is done.


2013 ◽  
Vol 365-366 ◽  
pp. 294-298 ◽  
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

The meshing principle of a new kind of parabolic gear is introduced, and the tooth surface equations of parabolic gear are obtained. A tooth contact analysis to simulate meshing and contact is applied. The paper investigates the influence of misalignment on transmission errors and shift of bearing contact. Examples to illustrate the developed approaches are proposed. The research provides the basis for design of new high strength parabolic gears.


2013 ◽  
Vol 341-342 ◽  
pp. 572-576 ◽  
Author(s):  
Jin Fu Du ◽  
Zong De Fang ◽  
Min Xu ◽  
Xing Long Zhao ◽  
Yu Min Feng

The geometry of the tooth surface is important for tooth contact analysis, load tooth contact analysis and the ease-off of gear pairs. This paper presents a mathematical model for the determination of the tooth geometry of Klingelnberg face-hobbed hypoid gears. The formulation for the generation of gear and pinion tooth surfaces and the equations for the tooth surface coordinates are provided in the paper. The surface coordinates and normal vectors are calculated and tooth surfaces and 3D tooth geometries of gear and pinion are obtained. This method may also applied to other face-hobbing gears.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
M. Kolivand ◽  
A. Kahraman

Actual hypoid gear tooth surfaces do deviate from the theoretical ones either globally due to manufacturing errors or locally due to reasons such as tooth surface wear. A practical methodology based on ease-off topography is proposed here for loaded tooth contact analysis of hypoid gears having both local and global deviations. This methodology defines the theoretical pinion and gear tooth surfaces from the machine settings and cutter parameters, and constructs the surfaces of the theoretical ease-off and roll angle to compute for the unloaded contact analysis. This theoretical ease-off topography is modified based on tooth surface deviations and is used to perform a loaded tooth contact analysis according to a semi-analytical method proposed earlier. At the end, two examples, a face-milled hypoid gear set having local deviations and a face-hobbed one having global deviations, are analyzed to demonstrate the effectiveness of the proposed methodology in quantifying the effect of such deviations on the load distribution and the loaded motion transmission error.


Author(s):  
J-L Li ◽  
S-T Chiou

An innovative modified spur gear with crowned teeth and its generating mechanism are proposed in this study. The main purpose of tooth surface modification is to change line contact to point contact at the middle of gear tooth surfaces in order to avoid edge contact resulting from possible unavoidable axial misalignment. Moreover, the surface of one gear tooth can be generated with just one cutting process, thereby facilitating easy manufacturing. Based on gearing theory, the model for surface design is developed. A tooth contact analysis (TCA) model for the modified gear pair is also built to investigate meshing characteristics, so that transmission errors (TEs) under assembly errors can also be studied. Examples are included to verify the correctness of the models developed and to demonstrate gear characteristics.


Author(s):  
Yi Zhang ◽  
Zhi Wu ◽  
Nai-Yi Li

Abstract This paper presents an approach for the determination of conjugate pinion tooth surfaces of hypoid drives and the analysis of pinion mismatch. The conjugate pinion tooth surface is compared with the tooth surface of the pinion manufactured by the machine tool settings obtained by the local contact synthesis. The analysis of the mismatch provides a quantitative verification of the pinion surface modifications and complements the existing tooth contact analysis. A numerical example is included in the paper to demonstrate the analysis of pinion mismatch and tooth contact.


2012 ◽  
Vol 190-191 ◽  
pp. 213-217
Author(s):  
Miao Xin Xiao ◽  
Hua Ru Yan

The present situation of the tooth contact analysis (TCA) and the application of MATLAB to the tooth contact analysis (TCA) is introduced briefly in this paper. The tooth surface equation of the big gear and pinion is established by powerful mathematical calculation and graphic display of MATLAB, at the same time transmission error and contact path is obtained. The calculation process is simplified and the operation precision of TCA is improved than before.


Sign in / Sign up

Export Citation Format

Share Document