On the Stability of Linear Stochastic Differential Equations

1973 ◽  
Vol 40 (1) ◽  
pp. 87-92 ◽  
Author(s):  
F. Kozin ◽  
C.-M. Wu

In this paper we present a study of the almost-sure sample stability properties of second-order linear systems with stochastic coefficients. Using knowledge of the first density functions of the coefficient processes, stability conditions are obtained. Based upon recent necessary and sufficient conditions for white-noise coefficient systems, the conditions obtained may yield a close approximation of the exact stability region for the Gaussian coefficient case.


1994 ◽  
Vol 26 (02) ◽  
pp. 498-515 ◽  
Author(s):  
Wojciech Szpankowski

We consider the standard slotted ALOHA system with a finite number of buffered users. Stability analysis of such a system was initiated by Tsybakov and Mikhailov (1979). Since then several bounds on the stability region have been established; however, the exact stability region is known only for the symmetric system and two-user ALOHA. This paper proves necessary and sufficient conditions for stability of the ALOHA system. We accomplish this by means of a novel technique based on three simple observations: applying mathematical induction to a smaller copy of the system, isolating a single queue for which Loynes' stability criteria is adopted, and finally using stochastic dominance to verify the required stationarity assumptions in the Loynes criterion. We also point out that our technique can be used to assess stability regions for other multidimensional systems. We illustrate it by deriving stability regions for buffered systems with conflict resolution algorithms (see also Georgiadis and Szpankowski (1992) for similar approach applied to stability of token-passing rings).



Author(s):  
Tadeusz Kaczorek

New stability conditions for positive continuous-discrete 2D linear systemsNew necessary and sufficient conditions for asymptotic stability of positive continuous-discrete 2D linear systems are established. Necessary conditions for the stability are also given. The stability tests are demonstrated on numerical examples.



1994 ◽  
Vol 26 (2) ◽  
pp. 498-515 ◽  
Author(s):  
Wojciech Szpankowski

We consider the standard slotted ALOHA system with a finite number of buffered users. Stability analysis of such a system was initiated by Tsybakov and Mikhailov (1979). Since then several bounds on the stability region have been established; however, the exact stability region is known only for the symmetric system and two-user ALOHA. This paper proves necessary and sufficient conditions for stability of the ALOHA system. We accomplish this by means of a novel technique based on three simple observations: applying mathematical induction to a smaller copy of the system, isolating a single queue for which Loynes' stability criteria is adopted, and finally using stochastic dominance to verify the required stationarity assumptions in the Loynes criterion. We also point out that our technique can be used to assess stability regions for other multidimensional systems. We illustrate it by deriving stability regions for buffered systems with conflict resolution algorithms (see also Georgiadis and Szpankowski (1992) for similar approach applied to stability of token-passing rings).



2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
A. I. Ismail

In this paper, the stability conditions for the rotary motion of a heavy solid about its fixed point are considered. The center of mass of the body is assumed to lie on the moving z-axis which is assumed to be the minor axis of the ellipsoid of inertia. The nonlinear equations of motion and their three first integrals are obtained when the principal moments of inertia are distributed as I 1 < I 2 < I 3 . We construct a Lyapunov function L to investigate the stability conditions for this motion. We give a numerical example to illustrate the necessary and sufficient conditions for the stability of the body at certain moments of inertia. This problem has many important applications in different sciences.



2013 ◽  
Vol 13 (2) ◽  
pp. 139-160
Author(s):  
Ivan P. Gavrilyuk ◽  
Volodymyr L. Makarov

Abstract. The necessary and sufficient conditions for stability of abstract difference schemes in Hilbert and Banach spaces are formulated. Contrary to known stability results we give stability conditions for schemes with non-self-adjoint operator coefficients in a Hilbert space and with strongly positive operator coefficients in a Banach space. It is shown that the parameters of the sectorial spectral domain play the crucial role. As an application we consider the Richardson iteration scheme for an operator equation in a Banach space, in particulary the Richardson iteration with precondition for a finite element scheme for a non-selfadjoint operator. The theoretical results are also the basis when using the regularization principle to construct stable difference schemes. For this aim we start from some simple scheme (even unstable) and derive stable schemes by perturbing the initial operator coefficients and by taking into account the stability conditions. Our approach is also valid for schemes with unbounded operator coefficients.



2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.



2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.



1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.



Sign in / Sign up

Export Citation Format

Share Document