Free Vibrations of Longitudinally Stiffened Cylindrical Shells

1974 ◽  
Vol 41 (4) ◽  
pp. 1087-1093 ◽  
Author(s):  
J. T. S. Wang ◽  
S. A. Rinehart

This study is concerned with the free-vibration characteristics of thin cylindrical shells reinforced by longitudinal stringers for any edge boundary conditions. The structural system is treated as an isotropic cylinder interacting with a set of discrete thin-walled stringers. Frequencies of simply supported shells obtained according to the present analysis compare favorably with Ritz solution and existing experimental data. For mode shapes, the present analysis often yields much better results than Ritz solution. Numerical results for frequencies and mode shapes for clamped-clamped cylindrical shells are included, and frequencies of a shell with very flexible stiffeners compare favorably with frequencies of an unstiffened shell.

2014 ◽  
Vol 580-583 ◽  
pp. 2879-2882
Author(s):  
Xiao Wan Liu ◽  
Bin Liang

Effect of ring support position and geometrical dimension on the free vibration of ring-stiffened cylindrical shells is studied in this paper. The study is carried out by using Sanders shell theory. Based on the Rayleigh-Ritz method, the shell eigenvalue governing equation is derived. The present analysis is validated by comparing results with those in the literature. The vibration characteristics are obtained investigating two different boundary conditions with simply supported-simply supported and clamped-free as the examples. Key Words: Ring-stiffened cylindrical shell; Free vibration; Rayleigh-Ritz method.


1985 ◽  
Vol 52 (1) ◽  
pp. 149-154 ◽  
Author(s):  
K. Suzuki ◽  
A. W. Leissa

An exact method using power series expansions is presented for solving free vibration problems for noncircular cylindrical shells having circumferential thickness variation. The method is used to obtain the first known results for this class of problems. Frequencies and mode shapes are presented for a set of elliptical cylindrical shells having second degree thickness variation in each quadrant.


1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.


Author(s):  
Mrutyunjay Rout ◽  
Sasank Shekhara Hota ◽  
Amit Karmakar

Effects of delamination on free vibration characteristics of laminated stiffened cylindrical shells with pretwist are analyzed by finite element method. The investigation is carried out using an eight-noded quadratic isoparametric shell element, which incorporates the transverse shear deformation and rotary inertia along with a three-noded beam element for the stiffener. The multipoint constraint algorithm has been included to guarantee the compatibility of deformation, equilibrium of resultant forces, and moments at delamination crack tip. The general dynamic equilibrium equation is derived from Lagrange’s equation of motion for moderate rotational speeds for which the Coriolis effect is neglected. The standard eigenvalue problem is solved utilizing QR iteration algorithm. The accuracy of the present formulation is validated with benchmark solutions is available in the literature. The present work concerns about the effects of delamination, fiber orientation, twist angle, stiffener depth-to-shell thickness ratio, and rotational speed on the fundamental frequency of shallow cylindrical shells with stiffener. Representative mode shapes for some typical case of the stiffened shell for different twist angles and rotational speeds are also presented.


2019 ◽  
Vol 25 (18) ◽  
pp. 2494-2508 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Meskini

In this research, investigations are presented of the free vibration of porous laminated rotating circular cylindrical shells based on Love’s shell theory with simply supported boundary conditions. The equilibrium equations for circular cylindrical shells are obtained using Hamilton’s principle. Also, Navier’s solution is used to solve the equations of the cylindrical shell due to the simply supported boundary conditions. The results are compared with previous results of other researchers. The numerical result of this study indicates that with increase of the porosity coefficient the nondimensional backward and forward frequency decreased. Then the results of the free vibration of rotating cylindrical shells are presented in terms of the effects of porous coefficients, porous type, length to radius ratio, rotating speed, and axial and circumferential wave numbers.


1991 ◽  
Vol 15 (2) ◽  
pp. 147-159
Author(s):  
J.L. Urrutia-Galicia ◽  
L.J. Arango

The fundamental frequencies and modes of free vibration of simply supported circular cylindrical shells are explored. The results include the fundamental frequencies ωmn and the modes (m,n) of steel cylindrical shells which are presented in the form of a nomogram, see Figure 6. Besides, single more general formulas are given for cylindrical shells made out of any elastic material which turn out to be very suitable for design and analysis purposes.


2019 ◽  
Vol 945 ◽  
pp. 885-892 ◽  
Author(s):  
O.E. Sysoev ◽  
A.Y. Dobryshkin ◽  
Nyein Sit Naing ◽  
A.V. Baenkhaev

The operation of a structure of thin-walled open cylindrical shells with high economic efficiency is associated with the phenomenon of oscillations and resonance from the effects of cyclic loads and systems of attached masses. The oscillation processes of such structures are not sufficiently studied at present. The article describes a test bench for testing open thin-walled cylindrical shells hinged on the edges that carry a system of attached masses, and the results of experiments on the nature of a reduced-scale shell model are presented. The attached mass system represents metal cylinders of different masses arranged in a certain sequence on the shell body. The experimental dependence of the change in the frequency spectrum of the shell oscillations on the number, mass, and location of the system of attached masses is obtained. A mathematical model is developed for the behavior of an open thin-walled cylindrical shell with a system of attached masses, consistent with the experimental data for forced vibrations of the shell.


Sign in / Sign up

Export Citation Format

Share Document