Fracture Analysis of Adhesively Bonded Sheets

1976 ◽  
Vol 43 (4) ◽  
pp. 652-656 ◽  
Author(s):  
L. M. Keer ◽  
C. T. Lin ◽  
T. Mura

The problem of adhesively bonded sheets, one of which is cracked, is formulated by the utilization of integral transform methods. The objective of the investigation is to calculate the stress-intensity factor at the crack tip for the cracked sheets. Results are obtained when the cracked sheet has a single crack and an array of identical, equally spaced, coplanar cracks. Results tend to indicate that the growth of crack implies a reduction in the stress-intensity factor.

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1625
Author(s):  
Emilie Lepretre ◽  
Sylvain Chataigner ◽  
Lamine Dieng ◽  
Laurent Gaillet

The use of adhesively bonded carbon fiber reinforced polymer (CFRP) materials to reinforce cracked steel elements has gained widespread acceptance in order to extend the lifespan of metallic structures. This allows an important reduction of the stress intensity factor (SIF) at the crack tip and thus a significant increase of the fatigue life. This paper deals with the assessment of the SIF for repaired cracked steel plates, using semi-empirical analysis and finite element analysis. Metallic plates with only one crack originating from a center hole were investigated. Virtual crack closure technique (VCCT) was used to define and evaluate the stress intensity factor at crack tip. The obtained modeling results are compared with experimental investigations led by the authors for different reinforcement configurations including symmetrical and non-symmetrical reinforcement, normal modulus and ultra-high-modulus CFRP plates, and pre-stressed CFRP plates. Results show that finite element model (FEM) analysis can obviously simulate the fatigue performance of the CFRP bonded steel plates with different reinforcement configurations. Moreover, a parametric analysis of the influence of the pre-stressing level was also conducted. The results show that an increase of the pre-stressing level results in an increase of the fatigue life of the element.


2019 ◽  
Vol 485 (2) ◽  
pp. 162-165
Author(s):  
V. A. Babeshko ◽  
O. M. Babeshko ◽  
O. V. Evdokimova

The distinctions in the description of the conditions of cracking of materials are revealed. For Griffith–Irwin cracks, fracture is determined by the magnitude of the stress-intensity factor at the crack tip; in the case of the new type of cracks, fracture occurs due to an increase in the stress concentrations up to singular concentrations.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350044
Author(s):  
XIANHONG MENG ◽  
ZHAOYU BAI ◽  
MING LI

In this paper, the three-dimensional dynamic problem for an infinite elastic medium weakened by a crack of infinite length and finite width is analyzed, while the crack surfaces are subjected to mode I transient linear tractions. The integral transform approach is applied to reduce the governing differential equations to a pair of coupled singular integral equations, whose solutions can be obtained with the typical iteration method. The analytical solution of the stress intensity factor when the first wave and the first scattered wave reach the investigated crack tip is obtained. Numerical results are presented for different values of the width-to-longitudinal distance ratio z/l. It is found that the stress intensity factor decreases with the arrival of the first scattered longitudinal wave and increases with the arrival of the first scattered Rayleigh wave and tends to be stable. The static value considering both the first scattered wave and the first wave is about 50% greater than that considering only the first wave, and then the effect of the reflected wave is remarkable and deserves further study.


Author(s):  
George G. Adams

When a crack tip impinges upon a bi-material interface, the order of the stress singularity will be equal to, less than or greater than one-half. The generalized stress intensity factors have already been determined for some such configurations, including when a finite-length crack is perpendicular to the interface. However, for these non-square-root singular stresses, the determination of the conditions for crack growth are not well established. In this investigation, the critical value of the generalized stress intensity factor for tensile loading is related to the work of adhesion by using a cohesive zone model in an asymptotic analysis of the separation near the crack tip. It is found that the critical value of the generalized stress intensity factor depends upon the maximum stress of the cohesive zone model, as well as on the Dundurs parameters ( α and β ). As expected this dependence on the cohesive stress vanishes as the material contrast is reduced, in which case the order of the singularity approaches one-half.


1982 ◽  
Vol 49 (4) ◽  
pp. 754-760 ◽  
Author(s):  
P. S. Theocaris ◽  
C. I. Razem

The KIII-stress intensity factor in an edge-cracked plate submitted to antiplane shear may be evaluated by the reflected caustic created around the crack tip, provided that a purely elastic behavior exists at the crack tip [1]. For a work-hardening, elastic-plastic material, when stresses at the vicinity of the crack tip exceed the yield limit of the material, the new shape of caustic differs substantially from the corresponding shape of the elastic solution. In this paper the shape and size of the caustics created at the tip of the crack, when small-scale yielding is established in the vicinity of the crack tip, were studied, based on a closed-form solution introduced by Rice [2]. The plastic stress intensity factor may be evaluated from the dimensions of the plastic caustic. Experimental evidence with cracked plates made of opaque materials, like steel, corroborated the results of the theory.


2019 ◽  
Vol 795 ◽  
pp. 451-457
Author(s):  
Bao Yin Zhu ◽  
Xian Xi Xia ◽  
He Zheng ◽  
Guo Dong Zhang

An typical mode of a structural integrity failure in dissimilar steel welded joints. This paper aims at studying crack tip stress of a steam generator dissimilar welded joint under residual stress field with the method of interaction integral and XFEM. Firstly, the corresponding weak form is obtained where the initial stress field is involved, which is the key step for the XFEM. Then, the interaction integral is applying to calculate the stress intensity factor. In addition, two simple benchmark problems are simulated in order to verify the precision of this numerical method. Finally, this numerical method is applying to calculate the crack tip SIF of the addressed problem. This study finds that the stress intensity factor increases firstly then decreases with the deepening of the crack. The main preponderance of this method concerns avoiding mesh update by take advantage of XFEM when simulating crack propagation, which could avoid double counting. In addition, our obtained results will contribute to the safe assessment of the nuclear power plant steam generator.


Sign in / Sign up

Export Citation Format

Share Document