Impact of a Rigid Body on an Elastic Half Space

1977 ◽  
Vol 44 (2) ◽  
pp. 227-230 ◽  
Author(s):  
G. N. Bycroft

A Fourier synthesis of the steady-state vibrations of a rigid plate on an elastic half space is used to determine the deceleration and penetration of a rigid body impacting an elastic half space over a flat circular area. In order to obtain a satisfactory solution, it is necessary to integrate to a large value of the frequency factor. The theoretical values are compared with some simple experiments on lead and Neoprene.

1969 ◽  
Vol 36 (3) ◽  
pp. 505-515 ◽  
Author(s):  
D. C. Gakenheimer ◽  
J. Miklowitz

The propagation of transient waves in a homogeneous, isotropic, linearly elastic half space excited by a traveling normal point load is investigated. The load is suddenly applied and then it moves rectilinearly at a constant speed along the free surface. The displacements are derived for the interior of the half space and for all load speeds. Wave-front expansions are obtained from the exact solution, in addition to results pertaining to the steady-state displacement field. The limit case of zero load speed is considered, yielding new results for Lamb’s point load problem.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yang Yang ◽  
Qingliang Zeng ◽  
Lirong Wan

At present, the contact problem between the particle and the plane plate is generally equivalent to the rigid sphere impacting the elastic half space or the elastic sphere impacting the rigid surface. However, in the actual contact process, there will be no rigid body, and both contact and contacted object will deform and absorb energy. The research results obtained from the equivalent of the contact material to the rigid body are less accurate. In order to obtain the accurate mechanical relation and contact response, we took the research of impact between particles and the metal plate as a breakthrough in which the particle is equivalent to an elastic sphere and the metal plate is equivalent to an elastic half space and established the theory of vertical impact contact between elastic sphere and elastic half space by the Hertz contact theory. Through the dynamic simulation of an elastic sphere which has similar properties with rock impacting target in elastic half space in LS-DYNA, the correctness of the established theory and the feasibility of the contact process simulated by LS-DYNA are verified. Based on the established theory and 3D simulation, we studied the influence law of material parameters on the contact response and analyzed the differences of the collision vibration signals caused by the different contact objects. From the above research results, we obtain that the theoretical model is more accurate to predict the maximum contact force and contact displacement in this paper than traditional Hertz theory. And the sphere radius and both contact objects’ elastic modulus have larger influence on the contact response than sphere density, while the Poisson’s ratio has the smallest influence on the contact response results. Different material properties will cause the different contact response. The conclusions of this paper provide a theoretical calculation method for contact and a 3D simulation method for elastic half space and provide theoretical guidance for the differences analysis of the vibration signal.


1969 ◽  
Vol 7 (5) ◽  
pp. 126-128 ◽  
Author(s):  
I. V. Simonov ◽  
L. M. Flitman

2018 ◽  
Vol 188 (2) ◽  
pp. 162-175
Author(s):  
Joanna Bril ◽  
Edward Rydygier

The article presents the model research on impacts exerted by means of transport on the structures. In modelling the dynamics of transport systems the dynamic properties of the ground forming the foundation soil for tracks or roadways have been taken into account. The ground has been modelled as an elastic half-space. The dynamics of an infinite mass band being in contact with an elastic half-space has been investigated. As part of the research on impacts exerted by means of transport on structures a model of a problem has been examined where an automotive vehicle, representing a concentrated force in motion, is in contact with a roadway described as a rigid body coupled with an elastic half-space. It has been demonstrated that a surface (Rayleigh) wave propagates in the ground, being a continuous (elastic) medium, and acts on a structure modelled as a rigid body. The research results have been presented in the form of vertical and horizontal transmittances of the ground for different frequencies of loading with different unit forces.


Sign in / Sign up

Export Citation Format

Share Document