Three-Dimensional Coordinate Data Processing in Human Motion Analysis

1979 ◽  
Vol 101 (4) ◽  
pp. 279-283 ◽  
Author(s):  
T. P. Andriacchi ◽  
S. J. Hampton ◽  
A. B. Schultz ◽  
J. O. Galante

A method for three-dimensional coordinate processing of human motion is presented. The method is well suited for use with opto-electronic data acquisition equipment. A resolution of one part in 500 was achieved over a viewing field of 2.4 m. This resolution was found to be adequate for human gait analysis studies.

Author(s):  
Jan Stenum ◽  
Cristina Rossi ◽  
Ryan T. Roemmich

ABSTRACTWalking is the primary mode of human locomotion. Accordingly, people have been interested in studying human gait since at least the fourth century BC. Human gait analysis is now common in many fields of clinical and basic research, but gold standard approaches – e.g., three-dimensional motion capture, instrumented mats or footwear, and wearables – are often expensive, immobile, data-limited, and/or require specialized equipment or expertise for operation. Recent advances in video-based pose estimation have suggested exciting potential for analyzing human gait using only two-dimensional video inputs collected from readily accessible devices (e.g., smartphones, tablets). However, we currently lack: 1) data about the accuracy of video-based pose estimation approaches for human gait analysis relative to gold standard measurement techniques and 2) an available workflow for performing human gait analysis via video-based pose estimation. In this study, we compared a large set of spatiotemporal and sagittal kinematic gait parameters as measured by OpenPose (a freely available algorithm for video-based human pose estimation) and three-dimensional motion capture from trials where healthy adults walked overground. We found that OpenPose performed well in estimating many gait parameters (e.g., step time, step length, sagittal hip and knee angles) while some (e.g., double support time, sagittal ankle angles) were less accurate. We observed that mean values for individual participants – as are often of primary interest in clinical settings – were more accurate than individual step-by-step measurements. We also provide a workflow for users to perform their own gait analyses and offer suggestions and considerations for future approaches.


2021 ◽  
Vol 17 (4) ◽  
pp. e1008935
Author(s):  
Jan Stenum ◽  
Cristina Rossi ◽  
Ryan T. Roemmich

Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using two-dimensional video collected from readily accessible devices (e.g., smartphones). To date, several studies have extracted features of human gait using markerless pose estimation. However, we currently lack evaluation of video-based approaches using a dataset of human gait for a wide range of gait parameters on a stride-by-stride basis and a workflow for performing gait analysis from video. Here, we compared spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-source video-based human pose estimation) against simultaneously recorded three-dimensional motion capture from overground walking of healthy adults. When assessing all individual steps in the walking bouts, we observed mean absolute errors between motion capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time, swing time and double support time) and 0.049 m for step lengths. Accuracy improved when spatiotemporal gait parameters were calculated as individual participant mean values: mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths. The greatest difference in gait speed between motion capture and OpenPose was less than 0.10 m s−1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion capture and OpenPose were 4.0°, 5.6° and 7.4°. Our analysis workflow is freely available, involves minimal user input, and does not require prior gait analysis expertise. Finally, we offer suggestions and considerations for future applications of pose estimation for human gait analysis.


Author(s):  
Ítalo Rodrigues ◽  
Jadiane Dionisio ◽  
Rogério Sales Gonçalves

Author(s):  
Grazia Cicirelli ◽  
Donato Impedovo ◽  
Vincenzo Dentamaro ◽  
Roberto Marani ◽  
Giuseppe Pirlo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document