Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller

1975 ◽  
Vol 97 (3) ◽  
pp. 337-345 ◽  
Author(s):  
D. Eckardt

One of the critical problems in centrifugal compressor design is the diffuser-impeller interaction. Up to now, theoretical models, which describe one of the salient features of this problem, the impeller discharge mixing process, appear to be proved experimentally only at low tip speeds. In the present study investigations on this subject were accomplished in the vaneless diffuser of a low-pressure ratio centrifugal compressor, running at tip speeds of 300 m/s. Detailed, instantaneous measurements in the impeller discharge mixing zone were performed by high-frequency measuring systems. Relative velocity distributions at the exit of impeller blade channels show pronounced jet/wake-patterns. The radial extension of flow distortions in the vaneless diffuser entry region, caused by rotating wakes, reached up to higher radius ratios than predicted by theoretical models.

2019 ◽  
Vol 9 (16) ◽  
pp. 3416 ◽  
Author(s):  
T R Jebieshia ◽  
Senthil Kumar Raman ◽  
Heuy Dong Kim

The present study focuses on the aerodynamic performance and structural analysis of the centrifugal compressor impeller. The performance characteristics of the impeller are analyzed with and without splitter blades by varying the total number of main and splitter blades. The operating conditions of the compressor under centrifugal force and pressure load from the aerodynamic analysis are applied to the impeller blade and hub to perform the one-way Fluid–Structure Interaction (FSI). For the stress assessment, maximum equivalent von Mises stresses in the impeller blades are compared with the maximum allowable stress of the impeller material. The effects of varying the pressure field on the deformation and stress of the impeller are also calculated. The aerodynamic and structural performance of the centrifugal compressor at 73,000 rpm are investigated in terms of the efficiency, pressure ratio, equivalent von Mises stress, and total deformation of the impeller.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Soo-Yong Cho ◽  
Kook-Young Ahn ◽  
Young-Duk Lee ◽  
Young-Cheol Kim

An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN) was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD) and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.


Author(s):  
T. R. Jebieshia ◽  
S. K. Raman ◽  
H. D. Kim

Abstract The present study focuses on the aerodynamic performance and structural analysis of the centrifugal compressor impeller. Performance characteristics of the impeller are analyzed with and without splitter blades by varying the total number of main and splitter blades. The operating conditions of the compressor under centrifugal force and pressure load from the aerodynamic analysis were applied to the impeller blade and hub to perform the one-way Fluid-Structure Interaction (FSI). For the stress assessment, maximum equivalent von-Mises stresses in the impeller blades are compared with the maximum allowable stress of the impeller material. The effects of varying pressure field on the deformation and stress of the impeller is also calculated. The aerodynamic and structural performance of the centrifugal compressor at 73000 rpm are investigated in terms of the efficiency, pressure ratio, equivalent von-Mises stress, and total deformation of the impeller.


Author(s):  
Daniel Swain ◽  
Abraham Engeda

Centrifugal compressor blade trimming can be used for the purpose of changing the performance characteristics of an impeller or allowing a single impeller design to be used for a range of operating conditions. There are a number of methods of impeller blade trimming that may be employed to change the impeller flowrate, the pressure ratio, or both; however, the limitations of blade trimming and the effect on the flow field are not well understood. In this study, CFD is used to model the effects of three different methods of blade trimming on a single centrifugal compressor design. Impeller performance characteristics and analysis of the flow field are presented for a series of trims for each of the three trimming methods. Each method of trimming was found to be limited at some point by choke. Shifting the original shroud profile both axially and radially in proportion to the desired flow coefficient allowed the pressure ratio and efficiency of the original impeller to be maintained while changing the flow coefficient. Trimming the blades along the meridional length in proportion to the desired new flow coefficient without regard to the original shroud profile produced similar results, but allowed the impeller to be trimmed further than was practical using the radial-axial shroud offset method. Trimming the blades axially so that the original shroud profile is maintained produced a change in pressure ratio while maintaining the original impeller flow coefficient.


Author(s):  
Leandro Oliveira Salviano ◽  
Elóy Esteves Gasparin ◽  
Vitor Cesar N. Mattos ◽  
Bruno Barbizan ◽  
Fábio Saltara ◽  
...  

Author(s):  
Xu Yu-dong ◽  
Li Cong ◽  
Lv Qiong-ying ◽  
Zhang Xin-ming ◽  
Mu Guo-zhen

In order to study the effect of the trailing edge sweep angle of the centrifugal impeller on the aerodynamic performance of the centrifugal compressor, 6 groups of centrifugal impellers with different bending angles and 5 groups of different inclination angles were designed to achieve different impeller blade trailing edge angle. The computational fluid dynamics (CFD) method was used to simulate and analyze the flow field of centrifugal compressors with different blade shapes under design conditions. The research results show that for transonic micro centrifugal compressors, changing the blade trailing edge sweep angle can improve the compressor’s isentropic efficiency and pressure ratio. The pressure ratio of the compressor shows a trend of increasing first and then decreasing with the increase of the blade bending angle. When the blade bending angle is 45°, the pressure ratio of the centrifugal compressor reaches a maximum of 1.69, and the isentropic efficiency is 67.3%. But changing the inclination angle of the blade trailing edge has little effect on the isentropic efficiency and pressure ratio. The sweep angle of blade trailing edge is an effective method to improve its isentropic efficiency and pressure ratio. This analysis method provides a reference for the rational selection of the blade trailing edge angle, and provides a reference for the design of micro centrifugal compressors under high Reynolds numbers.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


Author(s):  
Shashank Mishra ◽  
Shaaban Abdallah ◽  
Mark Turner

Multistage axial compressor has an advantage of lower stage loading as compared to a single stage. Several stages with low pressure ratio are linked together which allows for multiplication of pressure to generate high pressure ratio in an axial compressor. Since each stage has low pressure ratio they operate at a higher efficiency and the efficiency of multi-stage axial compressor as a whole is very high. Although, single stage centrifugal compressor has higher pressure ratio compared with an axial compressor but multistage centrifugal compressors are not as efficient because the flow has to be turned from radial at outlet to axial at inlet for each stage. The present study explores the advantages of extending the axial compressor efficient flow path that consist of rotor stator stages to the centrifugal compressor stage. In this invention, two rotating rows of blades are mounted on the same impeller disk, separated by a stator blade row attached to the casing. A certain amount of turning can be achieved through a single stage centrifugal compressor before flow starts separating, thus dividing it into multiple stages would be advantageous as it would allow for more flow turning. Also the individual stage now operate with low pressure ratio and high efficiency resulting into an overall increase in pressure ratio and efficiency. The baseline is derived from the NASA low speed centrifugal compressor design which is a 55 degree backward swept impeller. Flow characteristics of the novel multistage design are compared with a single stage centrifugal compressor. The flow path of the baseline and multi-stage compressor are created using 3DBGB tool and DAKOTA is used to optimize the performance of baseline as well novel design. The optimization techniques used are Genetic algorithm followed by Numerical Gradient method. The optimization resulted into improvements in incidence and geometry which significantly improved the performance over baseline compressor design. The multistage compressor is more efficient with a higher pressure ratio compared with the base line design for the same work input and initial conditions.


Author(s):  
Sasuga Ito ◽  
Shin Okada ◽  
Yuki Kawakami ◽  
Kaito Manabe ◽  
Masato Furukawa ◽  
...  

Abstract Secondary flows in transonic centrifugal compressor impellers affect their aerodynamic performance. In open-type impellers, low energy fluids can accumulate on the suction surfaces near the trailing edge tip side since the secondary flows and tip leakage flows interfere each other and complex flow phenomena can be generated around the impellers. Therefore, designers must consider the effect of secondary flows to avoid the aerodynamic performance degradation while designing compressor impellers. In this paper, a novel design concept about suppression of secondary flows in centrifugal compressor impellers to improve their aerodynamic performance. A transonic centrifugal compressor impeller was redesigned with the present design concept by a two-dimensional inverse method based on a meridional viscous flow calculation in this study. A design concept was introduced in above calculation process. As the design concept, by bending vortex filaments with controlling peak positions of the blade loading distributions, induced velocity due to bound vortices at the blades was generated in radial opposite direction of the secondary flows on the suction surface. Due to investigate the effect of the design concept in this paper, three-dimensional Reynolds Averaged Navier-Stokes simulations were carried out, and the vortex cores were visualized by a critical point theory and colored by non-dimensional helicity. In the conventional transonic centrifugal compressor impeller, the secondary flow vortices were confirmed and one of the vortices was broken down. In the redesigned impeller, the breakdown of the secondary flow vortices was not observed and the accumulation of the low energy fluids was suppressed compared with the conventional impeller. The total pressure ratio and adiabatic efficiency of the redesign impeller were higher than that of the conventional impeller, and the secondary flows were successfully suppressed in this research.


Sign in / Sign up

Export Citation Format

Share Document