Suppression of Secondary Flows in a Transonic Centrifugal Compressor Impeller Using an Inverse Design Method Based on Meridional Viscous Flow Analysis

Author(s):  
Sasuga Ito ◽  
Shin Okada ◽  
Yuki Kawakami ◽  
Kaito Manabe ◽  
Masato Furukawa ◽  
...  

Abstract Secondary flows in transonic centrifugal compressor impellers affect their aerodynamic performance. In open-type impellers, low energy fluids can accumulate on the suction surfaces near the trailing edge tip side since the secondary flows and tip leakage flows interfere each other and complex flow phenomena can be generated around the impellers. Therefore, designers must consider the effect of secondary flows to avoid the aerodynamic performance degradation while designing compressor impellers. In this paper, a novel design concept about suppression of secondary flows in centrifugal compressor impellers to improve their aerodynamic performance. A transonic centrifugal compressor impeller was redesigned with the present design concept by a two-dimensional inverse method based on a meridional viscous flow calculation in this study. A design concept was introduced in above calculation process. As the design concept, by bending vortex filaments with controlling peak positions of the blade loading distributions, induced velocity due to bound vortices at the blades was generated in radial opposite direction of the secondary flows on the suction surface. Due to investigate the effect of the design concept in this paper, three-dimensional Reynolds Averaged Navier-Stokes simulations were carried out, and the vortex cores were visualized by a critical point theory and colored by non-dimensional helicity. In the conventional transonic centrifugal compressor impeller, the secondary flow vortices were confirmed and one of the vortices was broken down. In the redesigned impeller, the breakdown of the secondary flow vortices was not observed and the accumulation of the low energy fluids was suppressed compared with the conventional impeller. The total pressure ratio and adiabatic efficiency of the redesign impeller were higher than that of the conventional impeller, and the secondary flows were successfully suppressed in this research.

Author(s):  
Hirotaka Higashimori ◽  
Susumu Morishita ◽  
Masayuki Suzuki ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high pressure ratio compressors with high efficiency. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. This report presents a study on the internal flow of a high pressure ratio centrifugal compressor impeller. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow in the inducer is a complex transonic flow characterized by interaction between the shockwave and boundary layer, while the flow in the middle of the impeller is a distorted flow with a low energy region. In order to ensure the reliability of aerodynamic design technology for such transonic centrifugal compressors, the complex transonic flow and formation of the low energy region predicted by CFD must be actually measured, comparison must be undertaken between the CFD results and the actual flow measurement, and the accuracy and other issues pertaining to CFD must be clarified. In a previous report [12], we elucidated the flow in the inducer of a high transonic impeller by means of LDV and unsteady pressure measurement. That report showed that, in the flow of an inducer with a Mach number of approx. 1.6, the oblique shockwave in the middle of the impeller throat interacts with the blade tip leakage flow, and that reverse flow occurs in the vicinity of the casing. Furthermore, although CFD predicted a low energy region in the splitter portion, this could not be detected in actual measurement. In the context of the current report, comparative verification of the CFD and LDV measurement results was undertaken with respect to the formation of the casing wall surface boundary layer in the transonic flow within the inducer. In this conjunction, inducer bleed was introduced to control this boundary layer, and the effect of the inducer bleed on the flow was ascertained through actual measurement. It was also sought to additionally confirm the “low energy region” in the splitter. Accordingly, the flow velocity distribution was measured at two sections, thereby clarifying the characteristics of the actual flow in the region. The impeller for which measurement was performed has the same specifications as that in the previous report (see Table 1). In the present report, so as to measure the flow under conditions encouraging the formation of a boundary layer accompanying substantial inducer deceleration, measurement was conducted at 95% of design speed and a relative Mach number at the blade tips of about 1.5.


Author(s):  
Seiichi Ibaraki ◽  
Masato Furukawa ◽  
Kenichiro Iwakiri ◽  
Kazuya Takahashi

Transonic centrifugal compressors are used in turbochargers and turboshaft engines because of their small dimensions, relatively high efficiency and wide operating range. The flow field of the transonic centrifugal compressor impeller is highly three dimensional, and is complicated by shock waves, tip leakage vortices, secondary flows and the interactions among them. In order to improve the performance, it is indispensable to understand these complicated flow phenomena in the impeller. Although experimental and numerical research on transonic impeller flow has been reported, thus providing important flow physics, some undetected flow phenomena remain. The authors of the present report carried out detailed Navier-Stokes computations of a transonic impeller flow measured by Laser Doppler Velocimetry (LDV) in previous work. The highly complicated vortical flow structure and the mechanism of loss generation were revealed by a visual data mining technique, namely vortex identification based on the critical point theory and limiting streamline mapping by means of line integral convolution. As a result, it was found that the tip leakage vortices have a significant impact on the flow field and vortex breakdowns that increase the blockage of the flow passage, and that these were caused by shock wave interaction.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


Author(s):  
Hiroshi Hayami ◽  
Masahiro Hojo ◽  
Norifumi Hirata ◽  
Shinichiro Aramaki

A single-stage transonic centrifugal compressor with a pressure ratio greater than six was tested in a closed loop with HFC134a gas. Flow at the inducer of a rotating impeller as well as flow in a stationary low-solidity cascade diffuser was measured using a double-pulse and double-frame particle image velocimetry (PIV). Shock waves in both flows were clearly observed. The effect of flow rate on a 3D configuration of shock wave at the inducer and a so-called rotor-stator interaction between a rotating impeller and a stationary cascade were discussed based on a phase-averaged measurement technique. Furthermore, the unsteadiness of inducer shock wave and the flow in a cascade diffuser during surge were discussed based on instantaneous velocity vector maps.


2018 ◽  
Vol 2 ◽  
pp. I1RSJ3 ◽  
Author(s):  
Moritz Mosdzien ◽  
Martin Enneking ◽  
Alexander Hehn ◽  
Daniel Grates ◽  
Peter Jeschke

Due to the increasing demand for higher efficiencies of centrifugal compressors, numerical optimization methods are becoming more and more relevant in the design process. To identify the beneficial features of a numerical optimized compressor design, this paper analyses the influence of arbitrary blade surfaces on the loss generation in a transonic centrifugal compressor. The paper therefore focuses on an analysis of the secondary flow development within the impeller blade passages. To do this, steady simulations were performed on both a baseline and an optimized blade design. Two distinct design features of the optimized compressor stage were identified, which lead to a more homogenous impeller exit flow and thus to an increase in total-to-static efficiency of 1.76% points: the positive lean in the near-tip region and the positive blade curvature in the rear part of the optimized impeller. Furthermore, through extensive experimental investigations conducted on a large scale test rig it has been possible to prove the particular impeller outflow characteristics of the baseline compressor stage.


2019 ◽  
Vol 9 (16) ◽  
pp. 3416 ◽  
Author(s):  
T R Jebieshia ◽  
Senthil Kumar Raman ◽  
Heuy Dong Kim

The present study focuses on the aerodynamic performance and structural analysis of the centrifugal compressor impeller. The performance characteristics of the impeller are analyzed with and without splitter blades by varying the total number of main and splitter blades. The operating conditions of the compressor under centrifugal force and pressure load from the aerodynamic analysis are applied to the impeller blade and hub to perform the one-way Fluid–Structure Interaction (FSI). For the stress assessment, maximum equivalent von Mises stresses in the impeller blades are compared with the maximum allowable stress of the impeller material. The effects of varying the pressure field on the deformation and stress of the impeller are also calculated. The aerodynamic and structural performance of the centrifugal compressor at 73,000 rpm are investigated in terms of the efficiency, pressure ratio, equivalent von Mises stress, and total deformation of the impeller.


Author(s):  
Chaolei Zhang ◽  
Qinghua Deng ◽  
Zhenping Feng

This paper describes the aerodynamic redesign and optimization of a typical single stage centrifugal compressor, in which the total pressure ratio was improved from the original 4.0 to final 5.0 with the restrictions of keeping the impeller tip diameter, the design rotational speed and the design mass flow rate unchanged. Firstly the backsweep angle and the outlet blade height of the impeller were adjusted and the vaned diffuser was redesigned. Then a sensitivity analysis of the aerodynamic performance correlated to the primary redesign centrifugal compressor stage with respect to the chosen redesign variables was conducted, according to the parameterized results of the impeller and the vaned diffuser. Secondly the impeller and the vaned diffuser were optimized respectively under the stage environment at the design operation condition to improve the stage isentropic efficiency by using a global optimization method which coupled Evolutionary Algorithm (EA) and Artificial Neural Network (ANN), provided by the commercial software NUMECA DESIGN-3D. Subsequently the detailed performance maps of the centrifugal compressor stage corresponding to the primary redesign configuration and the optimum configuration were presented by Computational Fluid Dynamics (CFD) simulation. Finally the flow fields correlated to the centrifugal compressor configurations before and after optimization at the design operation condition were also compared and analyzed in detail. As a result the design target was achieved after the primary redesign, as a 2.7% gain in stage efficiency and a 3.6% increase in stage pressure ratio were obtained when compared with the primary redesign configuration after optimization. Moreover, the aerodynamic performance of the optimum configuration at the off-design operation conditions was also improved.


1984 ◽  
Vol 106 (2) ◽  
pp. 475-481 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore ◽  
P. H. Timmis

Calculations of three-dimensional viscous flow in the impeller of a centrifugal compressor are used as the basis of a study of the thermodynamics of the compression process. Flow in a high hub-tip ratio low specific speed impeller of approximately 3.4:1 pressure ratio is considered. Results are presented showing the work and loss production processes in the impeller. A strong influence of tip-leakage flow on the performance of this unshrouded wheel is found.


Author(s):  
Seiichi Ibaraki ◽  
Tetsuya Matsuo ◽  
Hiroshi Kuma ◽  
Kunio Sumida ◽  
Toru Suita

High pressure ratio centrifugal compressors are applied to turbochargers and turboshaft engines because of their small dimensions, high efficiency and wide operating range. Such a high pressure ratio centrifugal compressor has a transonic inlet condition accompanied with a shock wave in the inducer portion. It is generally said that extra losses are generated by interaction of the shock wave and the boundary layers on the blade surface. To improve the performance of high pressure ratio centrifugal compressor it is necessary to understand the flow phenomena. Although some research works on transonic impeller flow have been published, some unknown flow physics are still remaining. The authors designed a transonic impeller, with an inlet Mach number is about 1.3, and conducted detailed flow measurements by using Laser Doppler Velocimetry (LDV). In the result the interaction between the shock wave and tip leakage vortex at the inducer and flow distortion at the downstream of inducer were observed. The interaction of the boundary layer and the shock wave was not observed. Also computational flow analysis were conducted and compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document