A Liquid-Medium Step-Function Pressure Calibrator

1964 ◽  
Vol 86 (4) ◽  
pp. 723-727 ◽  
Author(s):  
R. O. Smith

Some characteristics of a step-function pressure calibrator of the type devised by D. P. Johnson and J. L. Cross of NBS have been investigated. Theoretical prediction of the wave generation appears to be impracticable. It has been found possible, by empirically determined adjustments, to produce monotonic step functions having 95 percent rise times in about 10 millisec suitable for calibration of transducers. Calibration accuracies are around 5 to 7 percent. The monotonic step-function pressure is also useful in evaluating creep or hysteresis in high frequency transducers which previously could not be inspected for that characteristic.

Author(s):  
Teije de Jong

AbstractIn this series of papers I attempt to provide an answer to the question how the Babylonian scholars arrived at their mathematical theory of planetary motion. Papers I and II were devoted to system A theory of the outer planets and of the planet Venus. In this third and last paper I will study system A theory of the planet Mercury. Our knowledge of the Babylonian theory of Mercury is at present based on twelve Ephemerides and seven Procedure Texts. Three computational systems of Mercury are known, all of system A. System A1 is represented by nine Ephemerides covering the years 190 BC to 100 BC and system A2 by two Ephemerides covering the years 310 to 290 BC. System A3 is known from a Procedure Text and from Text M, an Ephemeris of the last evening visibility of Mercury for the years 424 to 403 BC. From an analysis of the Babylonian observations of Mercury preserved in the Astronomical Diaries and Planetary Texts we find: (1) that dates on which Mercury reaches its stationary points are not recorded, (2) that Normal Star observations on or near dates of first and last appearance of Mercury are rare (about once every twenty observations), and (3) that about one out of every seven pairs of first and last appearances is recorded as “omitted” when Mercury remains invisible due to a combination of the low inclination of its orbit to the horizon and the attenuation by atmospheric extinction. To be able to study the way in which the Babylonian scholars constructed their system A models of Mercury from the available observational material I have created a database of synthetic observations by computing the dates and zodiacal longitudes of all first and last appearances and of all stationary points of Mercury in Babylon between 450 and 50 BC. Of the data required for the construction of an ephemeris synodic time intervals Δt can be directly derived from observed dates but zodiacal longitudes and synodic arcs Δλ must be determined in some other way. Because for Mercury positions with respect to Normal Stars can only rarely be determined at its first or last appearance I propose that the Babylonian scholars used the relation Δλ = Δt −3;39,40, which follows from the period relations, to compute synodic arcs of Mercury from the observed synodic time intervals. An additional difficulty in the construction of System A step functions is that most amplitudes are larger than the associated zone lengths so that in the computation of the longitudes of the synodic phases of Mercury quite often two zone boundaries are crossed. This complication makes it difficult to understand how the Babylonian scholars managed to construct System A models for Mercury that fitted the observations so well because it requires an excessive amount of computational effort to find the best possible step function in a complicated trial and error fitting process with four or five free parameters. To circumvent this difficulty I propose that the Babylonian scholars used an alternative more direct method to fit System A-type models to the observational data of Mercury. This alternative method is based on the fact that after three synodic intervals Mercury returns to a position in the sky which is on average only 17.4° less in longitude. Using reduced amplitudes of about 14°–25° but keeping the same zone boundaries, the computation of what I will call 3-synarc system A models of Mercury is significantly simplified. A full ephemeris of a synodic phase of Mercury can then be composed by combining three columns of longitudes computed with 3-synarc step functions, each column starting with a longitude of Mercury one synodic event apart. Confirmation that this method was indeed used by the Babylonian astronomers comes from Text M (BM 36551+), a very early ephemeris of the last appearances in the evening of Mercury from 424 to 403 BC, computed in three columns according to System A3. Based on an analysis of Text M I suggest that around 400 BC the initial approach in system A modelling of Mercury may have been directed towards choosing “nice” sexagesimal numbers for the amplitudes of the system A step functions while in the later final models, dating from around 300 BC onwards, more emphasis was put on selecting numerical values for the amplitudes such that they were related by simple ratios. The fact that different ephemeris periods were used for each of the four synodic phases of Mercury in the later models may be related to the selection of a best fitting set of System A step function amplitudes for each synodic phase.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiangnan Xiao ◽  
Chuang Zhao ◽  
Xingxing Feng ◽  
Xu Dong ◽  
Jiangli Zuo ◽  
...  

With the development trend of wireless and broadband in the communication link and even the whole information industry, the demand of high-frequency microwave bandwidth has been increasing. The RoF network system solves the problem of spectrum congestion in low-frequency band by providing an effective technology for the distribution of high-frequency microwave signals over optical fiber links. However, the traditional mm-wave generation technique is limited by the bandwidth of electronic devices. It is difficult to generate high-frequency and low-phase noise mm-wave signals with pure electrical components. The mm-wave communication technology based on photon assisted can overcome the bandwidth bottleneck of electronic devices and provide the potential for developing the low-cost infrastructure demand of broadband mobile services. This paper will briefly explain the characteristics of the RoF network system and the advantages of high-frequency mm-wave. Then we, respectively, introduce the modulation schemes of RoF mm-wave generation based on photon assisted including directly modulated laser (DML), external modulation, and optical heterodyne. The review mainly focuses on a variety of different mm-wave generation technologies including multifrequency vector mm-wave. Furthermore, we list several approaches to realize the large capacity data transmission techniques and describe the digital signal processing (DSP) algorithm flow in the receiver. In the end, we summarize the RoF network system and look forward to the future.


Author(s):  
S. F. Lukomskii ◽  
G. S. Berdnikov

We consider a class of (N, M)-elementary step functions on the p-adic Vilenkin group. We prove that (N, M)-elementary step function generates a MRA on p-adic Vilenkin group if and only if it is generated by a special N-valid rooted tree on the set of vertices {0,1,…p - 1} with the vector (0,…,0) ∈ ℤN as a root.


1982 ◽  
Vol 27 (2) ◽  
pp. 215-224 ◽  
Author(s):  
V. I. Karpman ◽  
A. G. Shagalov

An expression is derived for the ponderomotive force acting in a cold collisionless magnetized plasma in a high-frequency electromagnetic field. Some related topics, such as the magnetic moment and solenoidal currents induced by the HF field are considered. A microscopic approach is used. The results are in complete agreement with the general expression for the ponderomotive force in a liquid medium with frequency dispersion obtained earlier by Washimi & Karpman by means of phenomenological considerations.


Sign in / Sign up

Export Citation Format

Share Document