Pressure Drop and Heat Transfer in a Duct With Triangular Cross Section

1960 ◽  
Vol 82 (2) ◽  
pp. 125-136 ◽  
Author(s):  
E. R. G. Eckert ◽  
T. F. Irvine

Friction factors have been measured for a duct whose cross section has the shape of an isosceles triangle with a side ratio 5 to 1 in the fully developed flow region for laminar, transitional, and turbulent conditions. In addition, local and average heat-transfer coefficients and the temperature field in the duct wall have been determined for the condition of constant heat generation per unit volume of the duct walls. Friction factors in laminar flow agreed well with analytical predictions. In the turbulent flow range they were by 20 per cent lower than values calculated from relations for a round tube with the use of the “hydraulic diameter.” Heat-transfer coefficients averaged over the circumference of the duct were only half as large as values calculated from round tube relations in the Reynolds number range from 4300 to 24,000. The measurements also revealed that thermal starting lengths were in excess of 100 diameters. In round tubes a length of 10 to 20 diameters has been found sufficient to develop the temperature field.

1985 ◽  
Vol 107 (2) ◽  
pp. 327-333 ◽  
Author(s):  
R. Ghetzler ◽  
J. C. Chato ◽  
J. M. Crowley

Heat transfer and friction factors were experimentally determined in a scale model of high-voltage, pipe-type underground transmission systems for Reynolds numbers to 8000. Dielectric insulating oil (Sun No. 4) with a Prandtl number of 120 was utilized for the coolant. Two ratios of cable to enclosure pipe diameters, corresponding to standard and oversize enclosure pipes, were examined for the three-cable system. Helical wire wrap was included to simulate protective skid wires around the cables. Three configurations of cable positioning were considered—open triangular, close triangular, and cradled. A method of generalizing the heat transfer coefficients was developed and tested for rough pipe cables based on extensions of previous work in the literature. The generalized correlation, without correction factors, was found to be applicable only in two cases with appropriate flow pattens and geometries. Heat transfer to the pipe wall could be correlated by standard methods in the high Reynolds number range.


1994 ◽  
Vol 116 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Y. M. Zhang ◽  
W. Z. Gu ◽  
J. C. Han

The effect of compound turbulators on friction factors and heat transfer coefficients in rectangular channels with two opposite ribbed-grooved walls was determined for a Reynolds number range of 10,000 to 50,000. The channel width-to-height ratio was 10. The fully developed heat transfer coefficients and friction factors on the ribbed-grooved and smooth side walls of each test channel were measured for six rib-groove spacings (p/e = 8, 10, 15, 20, 25, and 30). The fully developed friction and heat transfer in similar aspect ratio rectangular channels with two opposite ribbed walls with two rib spacings (p/e = 8.5 and 11.5) was also measured for comparison. The results show that the heat transfer performance of the rib-groove roughened duct is much better than the rib roughened duct. The rib-groove roughened wall enhances the heat transfer 3.4 times and pays 6 times the pressure drop penalty, whereas the rib roughened wall, with similar rib height and rib spacing, enhances the heat transfer 2.4 times and pays about the same pressure drop penalty. Semi-empirical friction and heat transfer correlations were obtained. Flow measurements show that the roughened ducts have flatter velocity profiles than the smooth duct and rib-groove roughened duct produces higher turbulence intensity than the rib roughened duct. The flatter velocity profile and higher turbulence intensity are responsible for producing higher heat transfer.


1983 ◽  
Vol 105 (4) ◽  
pp. 862-869 ◽  
Author(s):  
R. S. Amano ◽  
M. K. Jensen ◽  
P. Goel

An experimental and numerical study is reported on heat transfer in the separated flow region created by an abrupt circular pipe expansion. Heat transfer coefficients were measured along the pipe wall downstream from an expansion for three different expansion ratios of d/D = 0.195, 0.391, and 0.586 for Reynolds numbers ranging from 104 to 1.5 × 105. The results are compared with the numerical solutions obtained with the k ∼ ε turbulence model. In this computation a new finite difference scheme is developed which shows several advantages over the ordinary hybrid scheme. The study also covers the derivation of a new wall function model. Generally good agreement between the measured and the computed results is shown.


1984 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
P. Souza Mendes ◽  
E. M. Sparrow

A comprehensive experimental study was performed to determine entrance region and fully developed heat transfer coefficients, pressure distributions and friction factors, and patterns of fluid flow in periodically converging and diverging tubes. The investigated tubes consisted of a succession of alternately converging and diverging conical sections (i.e., modules) placed end to end. Systematic variations were made in the Reynolds number, the taper angle of the converging and diverging modules, and the module aspect ratio. Flow visualizations were performed using the oil-lampblack technique. A performance analysis comparing periodic tubes and conventional straight tubes was made using the experimentally determined heat transfer coefficients and friction factors as input. For equal mass flow rate and equal transfer surface area, there are large enhancements of the heat transfer coefficient for periodic tubes, with accompanying large pressure drops. For equal pumping power and equal transfer surface area, enhancements in the 30–60 percent range were encountered. These findings indicate that periodic converging-diverging tubes possess favorable enhancement characteristics.


1965 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
P. J. Baker

This paper presents the results of heat transfer measurements taken on a two-dimensional supersonic parallel diffuser. The wall static pressure distributions and the corresponding heat transfer coefficients and fluxes have been measured for a range of initial total pressures. The effects of varying the area of the diffuser cross-section for the same upstream generating nozzle have also been studied. Mach number profiles measured at sections along the diffuser show that in the presence of shock waves and a positive pressure gradient the flow is very much underdeveloped. In general, the mean level of heat transfer is found to be much greater than that predicted by conventional empirical equations for subsonic pipe flows with zero pressure gradient. Further, on comparison between normal and oblique shock diffusion the former is found to give the higher level of heat transfer.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Mehmed Rafet Özdemir ◽  
Ali Koşar

The pressure drop and heat transfer due to the flow of de-ionized water at high mass fluxes in microtubes of ∼ 254 μm and ∼ 685 μm inner diameters is investigated in the laminar, transition and the turbulent flow regimes. The flow is hydrodynamically fully developed and thermally developing. The experimental friction factors and heat transfer coefficients are respectively predicted to within ±20% and ±30% by existing open literature correlations. Higher single phase heat transfer coefficients were obtained with increasing mass fluxes, which is motivating to operate at high mass fluxes and under thermally developing flow conditions. The transition to turbulent flow and friction factors for both laminar and turbulent conditions were found to be in agreement with existing theory. A reasonable agreement was present between experimental results and theoretical predictions recommended for convective heat transfer in thermally developing flows.


Author(s):  
Ronald S. Bunker ◽  
Sarah J. Osgood

An experimental study has been performed to investigate the convective heat transfer coefficients and friction factors present in square cooling passages with non-normal, or leaned turbulators. The standard form of turbulated channels used in virtually all turbine vanes and blades is that of nearly square turbulators, or rib rougheners, cast in an orthogonal orientation to the channel surface. While turbulators may be oriented at an angle to the bulk flow direction, the projection of the turbulator is still normal to the cast surface. Non-orthogonal lean angle presents an additional variable which may be used to improve or optimize performance, a factor hitherto not investigated. The present study has performed a series of experiments measuring both detailed heat transfer coefficient distributions and friction factors within a square channel with flow Reynolds numbers up to 400,000. Turbulator lean angles of 45, 22.5, 0, −22.5, and −45-degrees to the surface normal have been tested with a turbulator configuration of 45-degree orientation to the bulk flow, pitch-to-height ratio of 10, and height-to-hydraulic diameter ratio of 0.1. Results show up to a 20% reduction in heat transfer capability, and as much as 30% increase in friction factor. The local distributions of heat transfer are also more variable with lean angle. The conclusion is made that normal turbulators provide the best overall performance.


Sign in / Sign up

Export Citation Format

Share Document