Some Possible Critical Conditions in Nucleate Boiling

1963 ◽  
Vol 85 (2) ◽  
pp. 89-99 ◽  
Author(s):  
Yan-Po Chang

The primary purpose of this paper is to introduce into boiling heat transfer certain basic ideas from which several critical conditions are derived. The heat transfer in nucleate boiling is considered as being limited by the maximum rate of bubble generation from a unit area of the heating surface. With certain simplified assumptions, an equation is obtained for the first critical heat flux of nucleate boiling with and without forced convection and subcooling.

Author(s):  
Yasuo Koizumi ◽  
Kenta Hayashi

Pool nucleate boiling heat transfer experiments were performed for water at 0.101 MPa to examine the elementary process of the nucleate boiling. Heat transfer surface was made from a copper printed circuit board. Direct current was supplied to heat it up. The Bakelite plate of the backside of a copper layer was taken off at the center portion of the heat transfer surface. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. Bubble behavior was recorded with a high speed video camera. In the isolated bubble region, surface temperature was uniform during waiting time. When boiling bubble generation started, a large dip in the surface temperature was formed under the bubble. After the bubble left from the heat transfer surface, the surface temperature returned to former uniform temperature distribution. Surface temperature was not affected by the bubble generation beyond 1.6 mm from the center of the bubble. In the isolated bubble region, a convection term was approximately 80 % in total heat transfer rate. The importance of the three-phase interface line in the heat transfer should be checked carefully. In the intermediate and high heat flux region, the variation of surface temperature and heat flux were small. Rather those were close to their average values even at critical heat flux condition. It seemed that the large part of the heat transfer surface was covered with water even at the critical heat flux condition. The heat flux at the area that appeared to be the three-phase contact line was not so high and close to the average heat flux.


2020 ◽  
Vol 3 (2) ◽  
pp. 33
Author(s):  
M. M. Sarafraz ◽  
H. Arya

The subcooled flow boiling heat transfer characteristics of n-heptane and water is conducted for an upward flow inside the vertical annulus with an inner gap of 30 mm, in different heat fluxes up to 132kW.m-2, subcooling max.:30C, flow rate: 1.5 to 3.5lit.min-1 under the atmospheric pressure. The measured data indicate that the subcooled flow boiling heat transfer coefficient significantly increases with increasing liquid flow rate and heat flux and slightly decreases with decreasing the subcooling level. Although results demonstrate that subcooling is the most effective operation parameter on onset of nucleate boiling such that with decreasing the subcooling level, the inception heat flux significantly decreases. Besides, recorded results from the visualization of flow show that the mean diameter of the bubbles departing from the heating surface decreases slightly with increasing the flow rate and slightly decreases with decreasing the subcooling level. Meanwhile, comparisons of the present heat transfer data for n-heptane and water in the same annulus and with some existing correlations are investigated. Results of comparisons reveal an excellent agreement between experimental data and those of calculated by Chen Type model and Gungor–Winterton predicting correlation.


1998 ◽  
Vol 120 (3) ◽  
pp. 641-653 ◽  
Author(s):  
G. F. Naterer ◽  
W. Hendradjit ◽  
K. J. Ahn ◽  
J. E. S. Venart

Boiling heat transfer from inclined surfaces is examined and an analytical model of bubble growth and nucleate boiling is presented. The model predicts the average heat flux during nucleate boiling by considering alternating near-wall liquid and vapor periods. It expresses the heat flux in terms of the bubble departure diameter, frequency and duration of contact with the heating surface. Experiments were conducted over a wide range of upward and downward-facing surface orientations and the results were compared to model predictions. More active microlayer agitation and mixing along the surface as well as more frequent bubble sweeps along the heating surface provide the key reasons for more effective heat transfer with downward facing surfaces as compared to upward facing cases. Additional aspects of the role of surface inclination on boiling dynamics are quantified and discussed.


Author(s):  
Chien-Yuh Yang ◽  
Chien-Fu Liu

Numerous researches have been developed for pool boiling on microporous coated surface in the past decade. The nucleate boiling heat transfer was found to be increased by up to 4.5 times than that on uncoated surface. Recently, the two-phase micro heat exchangers have been considered for high flux electronic devices cooling. The enhancement techniques for improving the nucleate boiling heat transfer performance in the micro heat exchangers have gotten more importance. Previous studies of microporous coatings, however, have been restricted to boiling in unconfined space. No studies have been made on the feasibility of using microporous coatings for enhancing boiling in confined spaces. This study provides an experimental observation of the vapor generation and leaving processes on microporous coatings surface in a 1-mm confined space. It would be helpful for understanding the mechanism of boiling heat transfer and improving the design of two-phase micro heat exchangers. Aluminum particles of average diameter 20 μm were mixed with a binder and a carrier to develop a 150 μm thickness boiling enhancement paint on a 3.0 cm by 3.0 cm copper heating surface. The heating surface was covered by a thin glass plate with a 1 mm spacer to form a 1 mm vertical narrow space for the test section. The boiling phenomenon was recorded by a high speed camera. In addition to the three boiling regimes observed by Bonjour and Lallemand [1], i.e., isolated deformed bubbles, coalesced bubbles and partial dryout at low, moderate and high heat fluxes respectively in unconfined space, a suction and blowing process was observed at the highest heat flux condition. Owing to the space confinement, liquid was sucked and vapor was expelled periodically during the bubble generation process. This mechanism significantly enhanced the boiling heat transfer performance in confined space.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


1999 ◽  
Vol 121 (2) ◽  
pp. 365-375 ◽  
Author(s):  
R. J. Benjamin ◽  
A. R. Balakrishnan

A model for nucleate pool boiling heat transfer of binary mixtures has been proposed based on an additive mechanism. The contributing modes of heat transfer are (i) the heat transferred by microlayer evaporation, (ii) the heat transferred by transient conduction during the reformation of the thermal boundary layer, and (iii) the heat transferred by turbulent natural convection. The model takes into account the microroughness of the heating surface which has been defined quantitatively. The model compares satisfactorily with data obtained in the present study and in the literature. These data were obtained on a variety of heating surfaces such as a vertical platinum wire, a horizontal stainless steel tube and flat horizontal aluminium, and stainless steel surfaces (with various surface finishes) thereby demonstrating the validity of the model.


Author(s):  
Magdalena Piasecka ◽  
Mieczyslaw E. Poniewski

The experimental investigations cover heat transfer of refrigerants R 123 and R 11 flowing through vertical minichannels of 40 mm wide rectangular section and depths of 1 mm, 1.5 mm and 2 mm. The heating foil, supplied with controlled direct current, constitutes one of the surfaces of the minichannel. The liquid crystal thermography technique is applied in order to measure the two-dimensional temperature field of the heating surface. The investigations focus on the transition from single-phase forced convection to nucleate boiling, i.e. in the zone of boiling incipience. The present work aims to examine and analyze how the selected parameters (inlet pressure, inlet liquid subcooling, liquid flow velocity) affect nucleate boiling incipience for various geometry (changeable depth) of the minichannel. Furthermore, the investigations are intended to develop a correlation for the calculations of the Nusselt number under the conditions of boiling incipience in the minichannel. The equations are derived as modifications of the already developed ones [Piasecka, 2002; Piasecka and Poniewski, 2003b,c; Piasecka et al., 2004] and as a function of changeable parameters in the experimental investigations.


2020 ◽  
Vol 2 (1) ◽  
pp. 247-252
Author(s):  
Łukasz J. Orman ◽  
Norbert Radek ◽  
Jacek Pietraszek ◽  
Dariusz Gontarski

AbstractThe paper discusses nucleate boiling heat transfer on meshed surfaces during pool boiling of distilled water and ethyl alcohol of very high purity. It presents a correlation for heat flux developed for heaters covered with microstructural coatings made of meshes. The experimental results have been compared with the calculation results performed using the correlation and have been followed by discussion. Conclusions regarding the heat flux determination method have been drawn with the particular focus on the usefulness of the considered model for heat flux calculations on samples with sintered mesh layers.


Sign in / Sign up

Export Citation Format

Share Document