A Solar Trough Concentrator for Pill-Box Flux Distribution Over a CPV Panel

2010 ◽  
Vol 132 (1) ◽  
Author(s):  
R. Bader ◽  
A. Steinfeld

An integral methodology is formulated to analytically derive the exact profile of a solar trough concentrator that delivers a uniform radiative flux distribution over a flat rectangular target area at the focal plane. The Monte Carlo ray-tracing technique is applied to verify the analytical solution and investigate the effect of sun shape and mirror surface imperfections on the radiation uniformity and spillage. This design is pertinent to concentrating photovoltaics at moderate mean solar flux concentration ratios of up to 50 suns.

2021 ◽  
Vol 9 ◽  
Author(s):  
Seung Jin Oh ◽  
Hyungchan Kim ◽  
Youngsun Hong

The concentration ratio is one of the most important characteristics in designing a Cassegrain solar concentrator since it directly affects the performance of high-density solar energy applications such as concentrated photovoltaics (CPVs). In this study, solar concentrator modules that have different configurations were proposed and their performances were compared by means of a Monte Carlo ray-tracing algorithm to identify the optimal configurations. The first solar concentrator design includes a primary parabolic concentrator, a parabolic secondary reflector, and a homogenizer. The second design, on the other hand, includes a parabolic primary concentrator, a secondary hyperbolic concentrator, and a homogenizer. Two different reflectance were applied to find the ideal concentration ratio and the actual concentration ratio. In addition, uniform rays and solar rays also were compared to estimate their efficiency. Results revealed that both modules show identical concentration ratios of 610 when the tracking error is not considered. However, the concentration ratio of the first design rapidly drops when the sun tracking error overshoots even 0.1°, whereas the concentration ratio of the second design remained constant within the range of the 0.8° tracking error. It was concluded that a paraboloidal reflector is not appropriate for the second mirror in a Cassegrain concentrator due to its low acceptance angle. The maximum collection efficiency was achieved when the f-number is smaller and the rim angle is bigger and when the secondary reflector is in a hyperboloid shape. The target area has to be rather bigger with a shorter focal length for the secondary reflector to obtain a wider acceptance angle.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Cyril Caliot ◽  
Hadrien Benoit ◽  
Emmanuel Guillot ◽  
Jean-Louis Sans ◽  
Alain Ferriere ◽  
...  

The design of solar concentrating systems and receivers requires the spatial distribution of the solar flux on the receiver. This article presents an integral formulation of the optical model for the multiple reflections involved in solar concentrating facilities, which is solved by a Monte Carlo ray-tracing (MCRT) algorithm that handles complex geometries. An experimental validation of this model is obtained with published results for a dish configuration. The convergence of the proposed algorithm is studied and found faster than collision-based algorithms. In addition, an example of the use of the sensitivity of the power on a target to the mirror rms-slope is given by treating an inverse-problem consisting in finding the equivalent rms-slope of mirrors that best match the flux map measurements.


Solar Energy ◽  
2020 ◽  
Vol 211 ◽  
pp. 167-182
Author(s):  
Xiaoyue Duan ◽  
Caitou He ◽  
Xiaoxia Lin ◽  
Yuhong Zhao ◽  
Jieqing Feng

2011 ◽  
Vol 347-353 ◽  
pp. 1530-1536 ◽  
Author(s):  
Fu Qiang Wang ◽  
He Ping Tan ◽  
Yong Shuai

Optical efficiency analysis of conical cavity receiver is introduced in this receiver. Monte-Carlo ray tracing codes was developed to analyze the optical efficiency and heat flux distribution of conical cavity receiver with aperture radius variation. Besides, the impact of slope error variation on the optical efficiency and heat flux distribution are also investigated. The numerical results show that inverted conical cavity receiver with optimized aperture radius has the highest optical efficiency.


2012 ◽  
Vol 29 ◽  
pp. 123-136 ◽  
Author(s):  
Qiang Yu ◽  
Zhifeng Wang ◽  
Ershu Xu ◽  
Hongli Zhang ◽  
Zhenwu Lu ◽  
...  

Author(s):  
Tejas U. Ulavi ◽  
Jane H. Davidson ◽  
Tim Hebrink

The technical performance of a non-tracking hybrid PV/T concept that uses a wavelength selective film is modeled. The wavelength selective film is coupled with a compound parabolic concentrator to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber while transmitting the visible portion of the spectrum to an underlying thin-film photovoltaic module. The optical performance of the CPC/selective film is obtained through Monte Carlo Ray-Tracing. The CPC geometry is optimized for maximum total energy generation for a roof-top application. Applied to a rooftop in Phoenix, Arizona USA, the hybrid PV/T provides 20% more energy compared to a system of the same area with independent solar thermal and PV modules, but the increase is achieved at the expense of a decrease in the electrical efficiency from 8.8% to 5.8%.


Author(s):  
Katherine R. Krueger ◽  
Jane H. Davidson ◽  
Wojciech Lipin´ski

In this paper, we present a systematic procedure to design a solar simulator for high-temperature concentrated solar thermal and thermo-chemical research. The 45 kWe simulator consists of seven identical radiation units of common focus, each comprised of a 6.5 kWe xenon arc lamp close-coupled to a precision reflector in the shape of a truncated ellipsoid. The size and shape of each reflector is optimized by a Monte Carlo ray tracing analysis to achieve multiple design objectives, including high transfer efficiency of radiation from the lamps to the common focal plane and desired flux distribution. Based on the numerical results, the final optimized design will deliver 7.5 kW over a 6-cm diameter circular disc located in the focal plane, with a peak flux approaching 3.7 MW/m2.


2014 ◽  
Author(s):  
Guojin Feng ◽  
Ping Li ◽  
Yingwei He ◽  
Yu Wang ◽  
Houping Wu

Sign in / Sign up

Export Citation Format

Share Document