Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach

2010 ◽  
Vol 63 (3) ◽  
Author(s):  
Denis Sipp ◽  
Olivier Marquet ◽  
Philippe Meliga ◽  
Alexandre Barbagallo

This review article addresses the dynamics and control of low-frequency unsteadiness, as observed in some aerodynamic applications. It presents a coherent and rigorous linearized approach, which enables both to describe the dynamics of commonly encountered open-flows and to design open-loop and closed-loop control strategies, in view of suppressing or delaying instabilities. The approach is global in the sense that both cross-stream and streamwise directions are discretized in the evolution operator. New light will therefore be shed on the streamwise properties of open-flows. In the case of oscillator flows, the unsteadiness is due to the existence of unstable global modes, i.e., unstable eigenfunctions of the linearized Navier–Stokes operator. The influence of nonlinearities on the dynamics is studied by deriving nonlinear amplitude equations, which accurately describe the dynamics of the flow in the vicinity of the bifurcation threshold. These equations also enable us to analyze the mean flow induced by the nonlinearities as well as the stability properties of this flow. The open-loop control of unsteadiness is then studied by a sensitivity analysis of the eigenvalues with respect to base-flow modifications. With this approach, we manage to a priori identify regions of the flow where a small control cylinder suppresses unsteadiness. Then, a closed-loop control approach was implemented for the case of an unstable open-cavity flow. We have combined model reduction techniques and optimal control theory to stabilize the unstable eigenvalues. Various reduced-order-models based on global modes, proper orthogonal decomposition modes, and balanced modes were tested and evaluated according to their ability to reproduce the input-output behavior between the actuator and the sensor. Finally, we consider the case of noise-amplifiers, such as boundary-layer flows and jets, which are stable when viewed in a global framework. The importance of the singular value decomposition of the global resolvent will be highlighted in order to understand the frequency selection process in such flows.

Author(s):  
William J. Emblom

Methods for improving the robustness of panel forming including the introduction of process sensing and feedback and control has resulted in significant gains in the quality of parts and reduced failures. Initial efforts in implementing closed-loop control during panel forming used active tool elements to ensure that the total punch force followed prescribed trajectories. However, more recently local forces within the tooling have been demonstrated to not only follow desired force trajectories but have been shown to increase the operational envelope of the tooling compared to open-loop tests and even closed-loop test where the total punch force had been controlled. However, what has not been examined is the effect of local force, especially during closed-loop control panel forming operations on the total punch force measured during forming. This paper addresses this by comparing the results of both open-loop tests and closed-loop tests and examining the effects on both local and total punch forces. It was found that while open-loop forming with various constant draw bead depths resulted in varying total punch forces, once closed-loop control was implemented the total punch forces followed virtually identical trajectories. The tooling for this project included local force transducers and a total punch force transducer. In addition, active draw beads could be controlled during forming and a flexible blank holder with variable blank holder forces were part of the setup.


Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann ◽  
John E. Beard

An experimental evaluation of the strains in an oval stamp forming die is presented. The die design included a flexible blank holder and active draw beads. The die was instrumented with local punch force and wrinkle sensors and control systems were developed in order to follow local punch force and wrinkle trajectories. Strains were measured after pan forming for both open and closed-loop tests. The relation between blank holder force, draw bead penetration, and strains were explored in the critical strain region of the formed pan. Closed-loop control of the local punch forces at the die ends was established using blank holder forces. The strains for tests with various lubrication conditions and draw bead penetrations were compared. It was observed that there is a tendency for the strains in critical locations to converge or remain constant for the closed-loop control tests while the strains tended to increase with blank holder force for open-loop tests. It was concluded that by controlling local punch forces, strain is indirectly controlled.


Author(s):  
Donald L. Simon ◽  
Aidan W. Rinehart ◽  
Scott M. Jones

Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engine’s low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturer’s customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engine’s operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.


Author(s):  
M Goetz ◽  
M C Levesley ◽  
D A Crolla

Based on a detailed dynamic model of an automotive powertrain containing a twin-clutch transmission, an integrated powertrain control for gearshifts is developed. The operation of this controller is demonstrated on the basis of simulation results for upshifts, downshifts, and multiple gearshifts taking place within the same half of the transmission. The control algorithm makes use of closed-loop control of clutch slip for a smooth transfer of engine torque with the aim of reproducing the operation of a one-way clutch. Further elements are a closed-loop control of engine speed through a combination of a manipulation of engine controls and clutch pressure. In addition, it is demonstrated that the control of transmission output torque during gearshifts can add robustness to the control and provides a means to manipulate directly the gearshift character. Finally, the dynamic effects of gear preselection through conventional hydraulically actuated cone-type synchronizers on the overall shift quality are discussed.


Author(s):  
Daniel Guyot ◽  
Christian Oliver Paschereit

Active instability control was applied to an atmospheric swirl-stabilized premixed combustor using open loop and closed loop control schemes. Actuation was realised by two on-off valves allowing for symmetric and asymmetric modulation of the premix fuel flow while maintaining constant time averaged overall fuel mass flow. Pressure and heat release fluctuations in the combustor as well as NOx, CO and CO2 emissions in the exhaust were recorded. In the open loop circuit the heat release response of the flame was first investigated during stable combustion. For symmetric fuel modulation the dominant frequency in the heat release response was the modulation frequency, while for asymmetric modulation it was its first harmonic. In stable open loop control a reduction of NOx emissions due to fuel modulation of up to 19% was recorded. In the closed loop mode phase-shift control was applied while triggering the valves at the dominant oscillation frequency as well as at its second subharmonic. Both, open and closed loop control schemes were able to successfully control a low-frequency combustion instability, while showing only a small increase in NOx emissions compared to, for example, secondary fuel modulation. Using premixed open loop fuel modulation, attenuation was best when modulating the fuel at frequencies different from the dominant instability frequency and its subharmonic. The performance of asymmetric fuel modulation was generally slightly better than for symmetric modulation in terms of suppression levels as well as emissions. Suppression of the instability’s pressure rms level of up to 15.7 dB was recorded.


Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


2018 ◽  
Vol 57 (49) ◽  
pp. 16795-16808
Author(s):  
Julián Cabrera-Ruiz ◽  
César Ramírez-Márquez ◽  
Shinji Hasebe ◽  
Salvador Hernández ◽  
J. Rafael Alcántara Avila

Sign in / Sign up

Export Citation Format

Share Document