Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions

2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Ching-Shin Norman Shiau ◽  
Nikhil Kaushal ◽  
Chris T. Hendrickson ◽  
Scott B. Peterson ◽  
Jay F. Whitacre ◽  
...  

Plug-in hybrid electric vehicle (PHEV) technology has the potential to reduce operating cost, greenhouse gas (GHG) emissions, and petroleum consumption in the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an optimization model integrating vehicle physics simulation, battery degradation data, and U.S. driving data. The model identifies optimal vehicle designs and allocation of vehicles to drivers for minimum net life cycle cost, GHG emissions, and petroleum consumption under a range of scenarios. We compare conventional and hybrid electric vehicles (HEVs) to PHEVs with equivalent size and performance (similar to a Toyota Prius) under urban driving conditions. We find that while PHEVs with large battery packs minimize petroleum consumption, a mix of PHEVs with packs sized for ∼25–50 miles of electric travel under the average U.S. grid mix (or ∼35–60 miles under decarbonized grid scenarios) produces the greatest reduction in life cycle GHG emissions. Life cycle cost and GHG emissions are minimized using high battery swing and replacing batteries as needed, rather than designing underutilized capacity into the vehicle with corresponding production, weight, and cost implications. At 2008 average U.S. energy prices, Li-ion battery pack costs must fall below $590/kW h at a 5% discount rate or below $410/kW h at a 10% rate for PHEVs to be cost competitive with HEVs. Carbon allowance prices offer little leverage for improving cost competitiveness of PHEVs. PHEV life cycle costs must fall to within a few percent of HEVs in order to offer a cost-effective approach to GHG reduction.

Author(s):  
Ching-Shin Norman Shiau ◽  
Scott B. Peterson ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicle (PHEV) technology has the potential to help address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption from the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an integrated optimization model utilizing vehicle physics simulation, battery degradation data, and U.S. driving data to determine optimal vehicle design and allocation of vehicles to drivers for minimum life cycle cost, GHG emissions, and petroleum consumption. We find that, while PHEVs with large battery capacity minimize petroleum consumption, a mix of PHEVs sized for 25–40 miles of electric travel produces the greatest reduction in lifecycle GHG emissions. At today’s average US energy prices, battery pack cost must fall below $460/kWh (below $300/kWh for a 10% discount rate) for PHEVs to be cost competitive with ordinary hybrid electric vehicles (HEVs). Carbon allowance prices have marginal impact on optimal design or allocation of PHEVs even at $100/tonne. We find that the maximum battery swing should be utilized to achieve minimum life cycle cost, GHGs, and petroleum consumption. Increased swing enables greater all-electric range (AER) to be achieved with smaller battery packs, improving cost competitiveness of PHEVs. Hence, existing policies that subsidize battery cost for PHEVs would likely be better tied to AER, rather than total battery capacity.


Author(s):  
Nikhil Kaushal ◽  
Ching-Shin Norman Shiau ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicle (PHEVs) technology has the potential to address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption. However, the net implications of PHEVs depend critically on the distances they are driven between charges: Urban drivers with short commutes who can charge frequently may benefit economically from PHEVs while also reducing fuel consumption and GHG emissions, but drivers who cannot charge frequently are unlikely to make up the cost of large PHEV battery packs with future fuel cost savings. We construct an optimization model to determine the optimal PHEV design and optimal allocation of PHEVs, hybrid-electric vehicles (HEVs) and conventional vehicles (CVs) to drivers in order to minimize net cost, fuel consumption, and GHG emissions. We use data from the 2001 National Household Transportation Survey to estimate the distribution of distance driven per day across vehicles. We find that (1) minimum fuel consumption is achieved by assigning large capacity PHEVs to all drivers; (2) minimum cost is achieved by assigning small capacity PHEVs to all drivers; and (3) minimum greenhouse gas emissions is achieved by assigning medium-capacity PHEVs to drivers who can charge frequently and large-capacity PHEVs to drivers who charge less frequently.


Author(s):  
Ching-Shin Norman Shiau ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicles (PHEVs) have potential to reduce greenhouse gas (GHG) emissions in the U.S. light-duty vehicle fleet. GHG emissions from PHEVs and other vehicles depend on both vehicle design and driver behavior. We pose a twice-differentiable, factorable mixed-integer nonlinear programming model utilizing vehicle physics simulation, battery degradation data, and U.S. driving data to determine optimal vehicle design and allocation for minimizing lifecycle greenhouse gas (GHG) emissions. The resulting nonconvex optimization problem is solved using a convexification-based branch-and-reduce algorithm, which achieves global solutions. In contrast, a randomized multistart approach with local search algorithms finds global solutions in 59% of trials for the two-vehicle case and 18% of trials for the three-vehicle case. Results indicate that minimum GHG emissions is achieved with a mix of PHEVs sized for around 35 miles of electric travel. Larger battery packs allow longer travel on electric power, but additional battery production and weight result in higher GHG emissions, unless significant grid decarbonization is achieved. PHEVs offer a nearly 50% reduction in life cycle GHG emissions relative to equivalent conventional vehicles and about 5% improvement over ordinary hybrid electric vehicles. Optimal allocation of different vehicles to different drivers turns out to be of second order importance for minimizing net life cycle GHGs.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Ching-Shin Norman Shiau ◽  
Jeremy J. Michalek

We pose a reformulated model for optimal design and allocation of conventional (CV), hybrid electric (HEV), and plug-in hybrid electric (PHEV) vehicles to obtain global solutions that minimize life cycle greenhouse gas (GHG) emissions of the fleet. The reformulation is a twice-differentiable, factorable, nonconvex mixed-integer nonlinear programming (MINLP) model that can be solved globally using a convexification-based branch-and-reduce algorithm. We compare results to a randomized multistart local-search approach for the original formulation and find that local-search algorithms locate global solutions in 59% of trials for the two-segment case and 18% of trials for the three-segment case. The results indicate that minimum GHG emissions are achieved with a mix of PHEVs sized for 25–45 miles of electric travel. Larger battery packs allow longer travel on electrical energy, but production and weight of underutilized batteries result in higher GHG emissions. Under the current average U.S. grid mix, PHEVs offer a nearly 50% reduction in life cycle GHG emissions relative to equivalent conventional vehicles and about 5% improvement over HEVs when driven on the standard urban driving cycle. Optimal allocation of different PHEVs to different drivers turns out to be of second order importance for minimizing net life cycle GHGs.


Sign in / Sign up

Export Citation Format

Share Document