Optimal Plug-in Hybrid Electric Vehicle Design and Allocation for Diverse Charging Patterns

Author(s):  
Nikhil Kaushal ◽  
Ching-Shin Norman Shiau ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicle (PHEVs) technology has the potential to address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption. However, the net implications of PHEVs depend critically on the distances they are driven between charges: Urban drivers with short commutes who can charge frequently may benefit economically from PHEVs while also reducing fuel consumption and GHG emissions, but drivers who cannot charge frequently are unlikely to make up the cost of large PHEV battery packs with future fuel cost savings. We construct an optimization model to determine the optimal PHEV design and optimal allocation of PHEVs, hybrid-electric vehicles (HEVs) and conventional vehicles (CVs) to drivers in order to minimize net cost, fuel consumption, and GHG emissions. We use data from the 2001 National Household Transportation Survey to estimate the distribution of distance driven per day across vehicles. We find that (1) minimum fuel consumption is achieved by assigning large capacity PHEVs to all drivers; (2) minimum cost is achieved by assigning small capacity PHEVs to all drivers; and (3) minimum greenhouse gas emissions is achieved by assigning medium-capacity PHEVs to drivers who can charge frequently and large-capacity PHEVs to drivers who charge less frequently.

Author(s):  
Ching-Shin Norman Shiau ◽  
Scott B. Peterson ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicle (PHEV) technology has the potential to help address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption from the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an integrated optimization model utilizing vehicle physics simulation, battery degradation data, and U.S. driving data to determine optimal vehicle design and allocation of vehicles to drivers for minimum life cycle cost, GHG emissions, and petroleum consumption. We find that, while PHEVs with large battery capacity minimize petroleum consumption, a mix of PHEVs sized for 25–40 miles of electric travel produces the greatest reduction in lifecycle GHG emissions. At today’s average US energy prices, battery pack cost must fall below $460/kWh (below $300/kWh for a 10% discount rate) for PHEVs to be cost competitive with ordinary hybrid electric vehicles (HEVs). Carbon allowance prices have marginal impact on optimal design or allocation of PHEVs even at $100/tonne. We find that the maximum battery swing should be utilized to achieve minimum life cycle cost, GHGs, and petroleum consumption. Increased swing enables greater all-electric range (AER) to be achieved with smaller battery packs, improving cost competitiveness of PHEVs. Hence, existing policies that subsidize battery cost for PHEVs would likely be better tied to AER, rather than total battery capacity.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Ching-Shin Norman Shiau ◽  
Nikhil Kaushal ◽  
Chris T. Hendrickson ◽  
Scott B. Peterson ◽  
Jay F. Whitacre ◽  
...  

Plug-in hybrid electric vehicle (PHEV) technology has the potential to reduce operating cost, greenhouse gas (GHG) emissions, and petroleum consumption in the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an optimization model integrating vehicle physics simulation, battery degradation data, and U.S. driving data. The model identifies optimal vehicle designs and allocation of vehicles to drivers for minimum net life cycle cost, GHG emissions, and petroleum consumption under a range of scenarios. We compare conventional and hybrid electric vehicles (HEVs) to PHEVs with equivalent size and performance (similar to a Toyota Prius) under urban driving conditions. We find that while PHEVs with large battery packs minimize petroleum consumption, a mix of PHEVs with packs sized for ∼25–50 miles of electric travel under the average U.S. grid mix (or ∼35–60 miles under decarbonized grid scenarios) produces the greatest reduction in life cycle GHG emissions. Life cycle cost and GHG emissions are minimized using high battery swing and replacing batteries as needed, rather than designing underutilized capacity into the vehicle with corresponding production, weight, and cost implications. At 2008 average U.S. energy prices, Li-ion battery pack costs must fall below $590/kW h at a 5% discount rate or below $410/kW h at a 10% rate for PHEVs to be cost competitive with HEVs. Carbon allowance prices offer little leverage for improving cost competitiveness of PHEVs. PHEV life cycle costs must fall to within a few percent of HEVs in order to offer a cost-effective approach to GHG reduction.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110502
Author(s):  
Xinbo Chen ◽  
Jian Zhong ◽  
Feng Sha ◽  
Zaimin Zhong

The plug-in hybrid electric vehicle not only has the advantages of low emissions from electric vehicles, but also takes advantage of the high specific energy and high specific power of petroleum fuels, which can significantly improve the emissions and fuel economy of traditional vehicles. Studying its comprehensive energy consumption evaluation method is an important part of analyzing the economics of plug-in hybrid electric vehicles. This paper first puts forward the concept of statistical energy consumption and then proposes an innovative calculation method of plug-in hybrid electric vehicle energy consumption based on statistical energy consumption by referring to and analyzing the energy consumption test regulations of the United States, the European Union, and China. Given the two use case assumptions of charge depleting mode priority and charge sustaining mode only, considering the fuel consumption and the energy consumption that converts electrical energy consumption to fuel consumption, the probability density function of travel mileage distribution and energy consumption is derived. Finally, the interpretation and analysis of statistical energy consumption evaluation results are carried out.


Author(s):  
Tao Deng ◽  
Ke Zhao ◽  
Haoyuan Yu

In the process of sufficiently considering fuel economy of plug-in hybrid electric vehicle (PHEV), the working time of engine will be reduced accordingly. The increased frequency that the three-way catalytic converter (TWCC) works in abnormal operating temperature will lead to the increasing of emissions. This paper proposes the equivalent consumption minimization strategy (ECMS) to ensure the catalyst temperature of PHEV can work in highly efficient areas, and the influence of catalyst temperature on fuel economy and emissions is considered. The simulation results show that the fixed equivalent factor of ECMS has great limitations for the underutilized battery power and the poor fuel economy. In order to further reduce fuel consumption and keep the emission unchanged, an equivalent factor map based on initial state of charge (SOC) and vehicle mileage is established by the genetic algorithm. Furthermore, an Adaptive changing equivalent factor is achieved by using the following strategy of SOC trajectory. Ultimately, adaptive equivalent consumption minimization strategy (A-ECMS) considering catalyst temperature is proposed. The simulation results show that compared with ordinary ECMS, HC, CO, and NOX are reduced by 14.6%, 20.3%, and 25.8%, respectively, which effectively reduces emissions. But the fuel consumption is increased by only 2.3%. To show that the proposed method can be used in actual driving conditions, it is tested on the World Light Vehicle Test Procedure (WLTC).


2018 ◽  
Vol 9 (4) ◽  
pp. 45 ◽  
Author(s):  
Nicolas Sockeel ◽  
Jian Shi ◽  
Masood Shahverdi ◽  
Michael Mazzola

Developing an efficient online predictive modeling system (PMS) is a major issue in the field of electrified vehicles as it can help reduce fuel consumption, greenhouse gasses (GHG) emission, but also the aging of power-train components, such as the battery. For this manuscript, a model predictive control (MPC) has been considered as PMS. This control design has been defined as an optimization problem that uses the projected system behaviors over a finite prediction horizon to determine the optimal control solution for the current time instant. In this manuscript, the MPC controller intents to diminish simultaneously the battery aging and the equivalent fuel consumption. The main contribution of this manuscript is to evaluate numerically the impacts of the vehicle battery model on the MPC optimal control solution when the plug hybrid electric vehicle (PHEV) is in the battery charge sustaining mode. Results show that the higher fidelity model improves the capability of accurately predicting the battery aging.


Author(s):  
Wissam Bou Nader ◽  
Yuan Cheng ◽  
Emmanuel Nault ◽  
Alexandre Reine ◽  
Samer Wakim ◽  
...  

Gas turbine systems are among potential energy converters to substitute the internal combustion engine as auxiliary power unit in future series hybrid electric vehicle powertrains. Fuel consumption of these auxiliary power units in the series hybrid electric vehicle strongly relies on the energy converter efficiency and power-to-weight ratio as well as on the energy management strategy deployed on-board. This paper presents a technological analysis and investigates the potential of fuel consumption savings of a series hybrid electric vehicle using different gas turbine–system thermodynamic configurations. These include a simple gas turbine, a regenerative gas turbine, an intercooler regenerative gas turbine, and an intercooler regenerative reheat gas turbine. An energetic and technological analysis is conducted to identify the systems’ efficiency and power-to-weight ratio for different operating temperatures. A series hybrid electric vehicle model is developed and the different gas turbine–system configurations are integrated as auxiliary power units. A bi-level optimization method is proposed to optimize the powertrain. It consists of coupling the non-dominated sorting genetic algorithm to the dynamic programming to minimize the fuel consumption and the number of switching ON/OFF of the auxiliary power unit, which impacts its durability. Fuel consumption simulations are performed on the worldwide-harmonized light vehicles test cycle while considering the electric and thermal comfort vehicle energetic needs. Results show that the intercooler regenerative reheat gas turbine–auxiliary power unit presents an improved fuel consumption compared with the other investigated gas turbine systems and a good potential for implementation in series hybrid electric vehicles.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879776 ◽  
Author(s):  
Jianjun Hu ◽  
Zhihua Hu ◽  
Xiyuan Niu ◽  
Qin Bai

To improve the fuel efficiency and battery life-span of plug-in hybrid electric vehicle, the energy management strategy considering battery life decay is proposed. This strategy is optimized by genetic algorithm, aiming to reduce the fuel consumption and battery life decay of plug-in hybrid electric vehicle. Besides, to acquire better drive-cycle adaptability, driving patterns are recognized with probabilistic neural network. The standard driving cycles are divided into urban congestion cycle, highway cycle, and urban suburban cycle; the optimized energy management strategies in three representative driving cycles are established; meanwhile, a comprehensive test driving cycle is constructed to verify the proposed strategies. The results show that adopting the optimized control strategies, fuel consumption, and battery’s life decay drop by 1.9% and 3.2%, respectively. While using the drive-cycle recognition, the features of different driving cycles can be identified, and based on it, the vehicle can choose appropriate control strategy in different driving conditions. In the comprehensive test driving cycle, after recognizing driving cycles, fuel consumption and battery’s life decay drop by 8.6% and 0.3%, respectively.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1493-1503
Author(s):  
Yang Li ◽  
Jili Tao ◽  
Liang Xie ◽  
Ridong Zhang ◽  
Longhua Ma ◽  
...  

Power allocation plays an important and challenging role in fuel cell and supercapacitor hybrid electric vehicle because it influences the fuel economy significantly. We present a novel Q-learning strategy with deterministic rule for real-time hybrid electric vehicle energy management between the fuel cell and the supercapacitor. The Q-learning controller (agent) observes the state of charge of the supercapacitor, provides the energy split coefficient satisfying the power demand, and obtains the corresponding rewards of these actions. By processing the accumulated experience, the agent learns an optimal energy control policy by iterative learning and maintains the best Q-table with minimal fuel consumption. To enhance the adaptability to different driving cycles, the deterministic rule is utilized as a complement to the control policy so that the hybrid electric vehicle can achieve better real-time power allocation. Simulation experiments have been carried out using MATLAB and Advanced Vehicle Simulator, and the results prove that the proposed method minimizes the fuel consumption while ensuring less and current fluctuations of the fuel cell.


Sign in / Sign up

Export Citation Format

Share Document