scholarly journals Ratcheting Assessment of a Fixed Tube Sheet Heat Exchanger Subject to In Phase Pressure and Temperature Cycles

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Khosrow Behseta ◽  
Donald Mackenzie ◽  
Robert Hamilton

An investigation of the cyclic elastic-plastic response of an Olefin plant heat exchanger subject to cyclic thermal and pressure loading is presented. Design by analysis procedures for assessment of shakedown and ratcheting are considered, based on elastic and inelastic analysis methods. The heat exchanger tube sheet thickness is nonstandard as it is considerably less than that required by conventional design by formula rules. Ratcheting assessment performed using elastic stress analysis and stress linearization indicates that shakedown occurs under the specified loading when the nonlinear component of the through thickness stress is categorized as peak stress. In practice, the presence of the peak stress will cause local reverse plasticity or plastic shakedown in the component. In nonlinear analysis with an elastic–perfectly plastic material model the vessel exhibits incremental plastic strain accumulation for 10 full load cycles, with no indication that the configuration will adapt to steady state elastic or plastic action, i.e., elastic shakedown or plastic shakedown. However, the strain increments are small and would not lead to the development of a global plastic collapse or gross plastic deformation during the specified life of the vessel. Cyclic analysis based on a strain hardening material model indicates that the vessel will adapt to plastic shakedown after 6 load cycles. This indicates that the stress categorization and linearization assumptions made in the elastic analysis are valid for this configuration.

Author(s):  
Donald Mackenzie ◽  
Khosrow Behseta ◽  
Robert Hamilton

An investigation of the cyclic elastic-plastic response of an Olefin plant heat exchanger subject to cyclic thermal and pressure loading is presented. The heat exchanger configuration is non-standard as the tube-sheet thickness is considerably less than that required by conventional design by formula rules. Ratchetting assessment is performed using the elastic stress analysis and stress categorization procedure, which indicates that shakedown occurs under the specified loading. The cyclic elastic-plastic response of the heat exchanger is also modeled by inelastic analysis, assuming both elastic perfectly plastic and a strain hardening material models. In the elastic-perfect plastic analysis, the vessel exhibits incremental plastic strain accumulation for 10 full load cycles, with no indication that the configuration will adapt to steady state elastic or plastic action; i.e. elastic shakedown or plastic shakedown. However, the strain increments are small and would not lead to the development of a global plastic collapse or gross plastic deformation during the specified life of the vessel. The strain hardening analysis indicates that the actual vessel will adapt to plastic shakedown after 6 load cycles.


2013 ◽  
Vol 742 ◽  
pp. 70-75 ◽  
Author(s):  
Mei Ni Su ◽  
Ben Young ◽  
Leroy Gardner

Aluminium alloys are nonlinear metallic materials with continuous stress-strain curves that are not well represented by the simplified elastic, perfectly plastic material model used in many current design specifications. Departing from current practice, the continuous strength method (CSM) is a recently proposed design approach for non-slender aluminium alloy structures with consideration of strain hardening. The CSM is deformation based and employs a base curve to define a continuous relationship between cross-section slenderness and deformation capacity. This paper explains the background and the two key components - (1) the base curve and (2) the strain hardening material model of the continuous strength method. More than 500 test results are used to verify the continuous strength methodas an accurate and consistent design method for aluminium alloy structures.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. L. Mahmood ◽  
R. Adibi-Asl ◽  
C. G. Daley

Simplified limit analysis techniques have already been employed for limit load estimation on the basis of linear elastic finite element analysis (FEA) assuming elastic-perfectly-plastic material model. Due to strain hardening, a component or a structure can store supplementary strain energy and hence carries additional load. In this paper, an iterative elastic modulus adjustment scheme is developed in context of strain hardening material model utilizing the “strain energy density” theory. The proposed algorithm is then programmed into repeated elastic FEA and results from the numerical examples are compared with inelastic FEA results.


Author(s):  
H. Indermohan ◽  
W. Reinhardt

Pressure components in nuclear power plants are designed to prevent the failure mechanism of incremental deformation or “ratcheting” due to the simultaneous application of mechanical loads such as pressure and cyclic loads. Design criteria using elastic methods that are specified in NB-3200 of ASME Section III Code are derived from a perfectly-plastic material model. The Code allows the use of plastic methods to demonstrate an acceptable response to cyclic loading, but does not provide clear guidance on any specific plasticity model to use. It has been shown in previous studies that some strain hardening plasticity models are unsuitable for establishing the absence of ratcheting. In this paper, the ratchet boundary obtained from the perfectly plastic and the strain hardening Armstrong-Frederick material models are examined based on the published experimental investigations of the classical Bree problem, pipe bends under in-plane bending and tension-torsion tests. Suitable criteria for evaluating the cyclic analysis response are discussed.


Author(s):  
Peter Carter ◽  
R. I. Jetter ◽  
T.-L. (Sam) Sham

The current rules in Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200°F (650°C) because, at higher temperatures, it is not feasible to decouple plasticity and creep; which is the basis for the current simplified rules. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic analysis methods and which are expected to be applicable to very high temperatures. The proposed rules are based on the use of an elastic-perfectly plastic material model with a pseudo yield strength selected to ensure that the accumulated strain and creep-fatigue damage with meeting the currently specified limits in Subsection NH. For this phase of the verification process, the proposed rules have been compared using simplified example problems to the results obtained from application of the current Subjection NH rules for both simplified methods and full inelastic analysis. The Subsection NH 316 stainless steel properties data are used for these comparisons. Results of calculations for a testing program underway on Alloy 617 at 950C are given.


1993 ◽  
Vol 60 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Castrenze Polizzotto

For a structure of elastic perfectly plastic material subjected to a given cyclic (mechanical and/or kinematical) load and to a steady (mechanical) load, the conditions are established in which plastic shakedown cannot occur whatever the steady load, and thus the structure is safe against the alternating plasticity collapse. Static and kinematic theorems, analogous to those of classical shakedown theory, are presented.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-degree pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic-perfectly-plastic material model. The second technique is an iterative based technique which uses the same elastic-perfectly-plastic material model, but incorporates large displacement effects accounting for geometric non-linearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic-plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equals or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


Author(s):  
Jun Shen ◽  
Heng Peng ◽  
Liping Wan ◽  
Yanfang Tang ◽  
Yinghua Liu

In the past, shakedown evaluation was usually based on the elastic method that the sum of the primary and secondary stress should be limited to 3Sm or the simplified elastic-plastic analysis method. The elastic method is just an approximate analysis, and the rigorous evaluation of shakedown normally requires an elastic-plastic analysis. In this paper, using an elastic perfectly plastic material model, the shakedown analysis was performed by a series of elastic-plastic analyses. Taking a shell with a nozzle subjected to parameterized temperature loads as an example, the impact of temperature change on the shakedown load was discussed and the shakedown loads of this structure at different temperature change rates were also obtained. This study can provide helpful references for engineering design.


2011 ◽  
Vol 38 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Mehdi H.K. Kharrazi ◽  
Carlos E. Ventura ◽  
Helmut G.L. Prion

In this paper, the effectiveness of the Modified Plate–Frame Interaction (M-PFI) model is evaluated by comparing its outcomes against those from experimental results obtained from a number of steel plate walls (SPWs) tested at different universities. As a result of the comparison, the M-PFI model was found to provide satisfactory predictions for SPW specimens constructed with steel plates welded to column and beam members. The M-PFI model was able to predict the initial stiffness, as well as to evaluate whether the boundary members of the SPW have sufficient capacity to allow for the infill plate to yield entirely. However, the model was found to underestimate the ultimate capacity of the SPW system mainly because, among other reasons, the material model used for its underlying theory is the elastic – perfectly plastic material model.


2017 ◽  
Vol 62 (2) ◽  
pp. 879-883 ◽  
Author(s):  
M. Zheng ◽  
H. Gao ◽  
H. Teng ◽  
J. Hu ◽  
Z. Tian ◽  
...  

AbstractIn this article, it aims to propose effective approaches for hydro-forming process of bi-metallic composite pipe by assuming plane strain and elastic-perfectly plastic material model. It derives expressions for predicting hydro-forming pressure and residual stress of the forming process of bi-metallic composite pipe. Test data from available experiments is employed to check the model and formulas. It shows the reliability of the proposed model and formulas impersonally.


Sign in / Sign up

Export Citation Format

Share Document