Numerical Simulation of Three-Dimensional Cavitation Around a Hydrofoil

2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Jing Yang ◽  
Lingjiu Zhou ◽  
Zhengwei Wang

Cavitation around a hydrofoil has significant three-dimensional features. The full cavitation model and a RNG k−ɛ turbulence model with a modified turbulence viscosity coefficient and which related to the vapor and liquid densities in the cavitating region were used to simulate cavitation around a hydrofoil, with emphasizing on cavity’s three-dimensional features. Computations were made on the three-dimensional flow field around a NACA66 hydrofoil at a 6 deg angle of attack. The results show that the shedding frequency on the 3D hydrofoil agrees well with the experimental data. The computed results also capture the main feature of the 3D cavitation, which had a crescent shaped cavity because of the span wise velocity. This span wise velocity is due to the span wise pressure gradient caused by the lateral vortex near the side wall of the tunnel.

2012 ◽  
Vol 472-475 ◽  
pp. 2195-2198 ◽  
Author(s):  
Shao Ping Zhou ◽  
Pei Wen Lv ◽  
Xiao Xia Ding ◽  
Yong Sheng Su ◽  
De Quan Chen

The three-dimensional flow field simulation of a centrifugal pump was presented by using commercial CFD code. In order to study the most suitable turbulence model, the three known turbulence models of Standard k-ε, RNG k-ε, Realizable k-ε were applied to simulate the flow field of the MJ125-100 centrifugal pump and predict the performance of the pump. The simulation results of head and efficiency were compared with available experimental data, and the comparison showed that the result of the numerical simulation by RNG k-ε model had the best agreement. Additionally, the effect of number of blades on the efficiency of pump was studied. The number of blades was changed from 4 to 7. The results showed that the impeller with 7 blades had the highest efficiency.


2005 ◽  
Author(s):  
E. Karunakaran ◽  
V. Ganesan

This paper is concerned with the study of performance of popular turbulence models used in the CFD analysis. Turbulence models considered for evaluation include the eddy viscosity models and the Reynolds stress model. The recent k-ε-v2-f model recommended for a flow with separation is also studied. Evaluation of the turbulence models in the present study focuses on a three-dimensional flow field development with adverse pressure gradient and flows that simulate wall-bounded turbulence. Numerical calculations are performed using SIMPLE based algorithm. Nowadays, decelerating flow in a diffuser is assessed by numerical simulations and the validation is done with experimental results. A comparison of the numerical results and the experimental data are presented. The main objective of the comparison is to obtain information on how well the numerical simulations representing the flow field with the standard turbulence models, are able to reproduce the experimental data.


2010 ◽  
Vol 102-104 ◽  
pp. 321-325 ◽  
Author(s):  
Jian Min Wu

In order to design the flow field of the NC-Electrochemical Machining (NC-ECM), a three-dimensional physical model of the flow passage is constructed based on the characteristic of the fluid flow, and three-dimensional flow field simulation is conducted with the applications of the Reynolds time-averaged Navier-Stokes equations and standard k- turbulence numerical model, velocity vectors on workpiece surface are calculated respectively based upon the three cathode outlet slots under the steady electrochemical machining condition. The present analysis show that electrolyte insufficiency appeared on workpiece surface for initial cathode flow field, and the experiment results verified the correctness of numerical simulation.


2021 ◽  
Vol 156 (A1) ◽  
Author(s):  
W L Luo ◽  
C Guedes Soares ◽  
Z J Zou

A study is presented of the effect of a pier on ship trajectories in currents. The current flow field around the pier is investigated. Experiments on ship manoeuvring and drift motion in the vicinity of a rectangular pier were carried out in a tank. Different current velocities and current angles were taken into account. The characteristics of the deviations of the ship trajectories from the initial course around the pier are investigated. Experimental findings indicate that the minimum required distance for safety navigation becomes larger with an increase of the current velocity. To obtain the details of continuous three-dimensional flow field around a pier, numerical simulation based on CFD calculations is conducted. The validity of the numerical simulation is demonstrated by comparison with experimental results.


2014 ◽  
Vol 156 (A1) ◽  

A study is presented of the effect of a pier on ship trajectories in currents. The current flow field around the pier is investigated. Experiments on ship manoeuvring and drift motion in the vicinity of a rectangular pier were carried out in a tank. Different current velocities and current angles were taken into account. The characteristics of the deviations of the ship trajectories from the initial course around the pier are investigated. Experimental findings indicate that the minimum required distance for safety navigation becomes larger with an increase of the current velocity. To obtain the details of continuous three-dimensional flow field around a pier, numerical simulation based on CFD calculations is conducted. The validity of the numerical simulation is demonstrated by comparison with experimental results.


Sign in / Sign up

Export Citation Format

Share Document