Characteristics and Modeling of Multiple Direction Optimized-Friction Pendulum System With Numerous Sliding Interfaces Subjected to Multidirectional Excitations

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
Yung-Chang Lin

In this paper, a base isolator called a multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. To understand the mechanical behavior of the Multiple DO-FPS isolator under multidirectional excitations, an analytical model called the multiple yield and bounding surfaces model is proposed. On the basis of the derived mathematical formulations for simulation of the characteristics of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect of the Multiple DO-FPS isolator are a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multidirectional excitations can be understood in a simple manner. The analytical results indicate that the natural frequency and damping effect of the Multiple DO-FPS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.

Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H.-C. Su

In this paper, a base isolator call the multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. For understanding the mechanical behavior of the Multiple DO-PFS isolator under multi-directional excitations, an analytical model called the multiple yield and bounding surfaces model is also proposed. On the basis of the derived mathematical formulations for the simulation of the characteristic of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect for a Multiple DO-FPS is a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multi-directional excitations can be simply understood. Analytical results infer that the natural frequency and damping effect of the Multiple DO-PFS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H.-C. Su

In order to systematically investigate the mechanical characteristic of a multiple friction pendulum system with more than two concave sliding interfaces and one articulated slider located between these concave sliding interfaces, on the basis of the plasticity theory, a plasticity model called the multiple yield and bounding surfaces model is proposed in addition to analytical formulations derived from the proposed concept of subsystems in this study. The proposed model has two separate groups of multiple yield and bounding surfaces. The first group is adopted to describe the mechanical behavior of the subsystem including the concave sliding interfaces above the articulated slider and the second group is used for modeling the sliding characteristic of the subsystem representing the concave sliding interfaces below the articulated slider. The connection of these two subsystems in series forms the mechanical characteristic of the entire MFPS isolation system. By virtue of the proposed model, the phenomena of the sliding motions of the MFPS isolator with multiple concave sliding interfaces under cyclical loadings can be clearly understood. Analytical results infer that the natural frequency and damping effect of the MFPS isolator with multiple concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H. C. Su ◽  
Ya-Fang Tseng

The multiple trench friction pendulum system (MTFPS) which has numerous sliding interfaces in each of two perpendicular directions can provide different natural periods, displacement capacities and damping effects at various levels of displacements in the individual direction. In order to characterize the mechanical behavior of the MTFPS isolator under multi-directional earthquakes, a plasticity model named as the multiple yield and bounding surfaces model is proposed in this study. Investigations for buildings isolated with TFPS isolators and subjected to multi-directional excitations have been carried out to assess the performance of the MTFPS isolation bearing in seismic mitigation through numerical analyses. Results from numerical analyses illustrate that the MTFPS isolation bearing can isolate most earthquake induced energy and provide good protection for structures from earthquake damage.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H. C. Su

Presented in this paper is the detailed mechanical characteristic of the multiple direction optimized-friction pendulum system. Based on the equilibrium equations, mathematical formulations describing the sliding motions of the multiple direction optimized-friction pendulum system have been derived. The mechanical behavior of the multiple DO-FPS isolation system under cyclic loadings has been investigated. The parametrical study for the multiple DO-FPS isolation bearing has also been carried out to realize its various characteristics under different parameters. It is demonstrated that the natural period and damping effect of the multiple DO-FPS isolator are a function of the sliding direction, displacement and coefficient of friction.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
Wei-Chan Tsai

In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new sliding type base isolator system called the multiple trench friction pendulum system (MTFPS) with multi-intermediate sliding plates is proposed. The MTFPS isolator is composed of a trench concave surface and numbers of intermediate sliding plates in each of two orthogonal directions. Mathematical formulations have been derived to examine its characteristics of the proposed MTFPS isolator. Based on mathematical formulations, it can be inferred that the natural frequency and damping effect of the MTFPS isolator change continually during earthquakes. Furthermore, results from shaking table tests demonstrate that the proposed isolator provides good protection to structures for preventing damage from strong earthquakes.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chi-Lu Lin

In order to prevent a building near a fault from earthquake damage, in this study an advanced base isolation system called the multiple direction optimized-friction pendulum system (Multiple DO-FPS or MDO-FPS) is proposed and examined to address its mechanical behavior through the finite element formulation and evaluate its efficiency in seismic mitigation through a series of shaking table tests. On the basis of the finite element formulation, it is revealed that the natural period, the capacity of the bearing displacement and damping effect for the Multiple Direction Optimized-Friction Pendulum System (Multiple DO-FPS) change continually during earthquakes. Therefore, the MDO-FPS isolator can avoid possibility of resonance of enriched frequencies from ground motions and provide an efficient capacity of the bearing displacement and damping during the earthquakes. Simultaneously, the shaking table test results also illustrate that the Multiple DO-FPS isolator possesses an outstanding seismic mitigation capabilities.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H. C. Su

In order to prevent a building from earthquake damage, a base isolation system called the multiple friction pendulum system (MFPS) which has numerous concave sliding interfaces is proposed to isolate a building from its foundation. Mathematical formulations have been derived to simulate the characteristic of the MFPS isolation system subjected to multi-directional excitations. By virtue of the derived mathematical formulations, the phenomena of the sliding motions of the MFPS isolator with several concave sliding interfaces under multi-directional earthquakes can be clearly understood. Also, numerical analyses of a building isolated with the MFPS isolator with several sliding interfaces have been conducted in this study to evaluate the efficiency of the proposed system in seismic mitigation. It has been proved through numerical analyses that structural responses have been reduced significantly and that the proposed system is a good tool to insure the safety of structures during earthquakes.


Author(s):  
C. S. Tsai ◽  
Y. M. Wang ◽  
H. C. Su

Presented in this paper is the performance evaluation of the multiple friction pendulum system (MFPS) with multiple sliding interfaces on seismic mitigation through a series of shaking table tests of a full scale MFPS-isolated building. In the tests, a three-story steel building of 40 tons in total weight, 3m and 4.5m in two horizontal directions and 9m in height, was equipped with MFPS isolators each with 4 sliding interfaces and subjected to various types of earthquakes to examine the efficiency of the isolators in reducing seismic response of a structure. Experimental results from shaking table tests tells that the roof accelerations, base shears, column shear forces have been significantly lessened with negligible residual displacements in the isolators while compared to the responses of a fixed-base structure.


Sign in / Sign up

Export Citation Format

Share Document