Seismic Mitigation Assessment of Building Using Multiple Direction Optimized-Friction Pendulum System

Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chi-Lu Lin

In order to prevent a building near a fault from earthquake damage, in this study an advanced base isolation system called the multiple direction optimized-friction pendulum system (Multiple DO-FPS or MDO-FPS) is proposed and examined to address its mechanical behavior through the finite element formulation and evaluate its efficiency in seismic mitigation through a series of shaking table tests. On the basis of the finite element formulation, it is revealed that the natural period, the capacity of the bearing displacement and damping effect for the Multiple Direction Optimized-Friction Pendulum System (Multiple DO-FPS) change continually during earthquakes. Therefore, the MDO-FPS isolator can avoid possibility of resonance of enriched frequencies from ground motions and provide an efficient capacity of the bearing displacement and damping during the earthquakes. Simultaneously, the shaking table test results also illustrate that the Multiple DO-FPS isolator possesses an outstanding seismic mitigation capabilities.

2008 ◽  
Vol 30 (9) ◽  
pp. 2321-2329 ◽  
Author(s):  
C.S. Tsai ◽  
Po-Ching Lu ◽  
Wen-Shin Chen ◽  
Tsu-Cheng Chiang ◽  
Chen-Tsung Yang ◽  
...  

Author(s):  
C. S. Tsai ◽  
Jeng-Wen Lin ◽  
Yung-Chang Lin ◽  
Chia-Chi Chen

In order to promote seismic resistance capability of structures and simplify the manufacturing processes of an isolator, a new base isolation system called the multiple trench friction pendulum system (MTFPS) is proposed. The investigations for the proposed isolator have been carried out to address its mechanical characteristics and to assess its performance in seismic mitigation through a series of shaking table tests in this study. The MTFPS isolator can provide different natural periods, displacement capacities and damping effects in any two independent directions. The natural period and damping effect for a MTFPS isolator change continually during earthquakes. Results from the shaking table tests on a scaled three-story structure isolated with MTFPS isolators illustrate that the proposed MTFPS isolator can isolate most earthquake induced energy and provide good protection for structures from earthquake damage. In addition, the mathematical formulations for the MTFPS isolator have also been derived to examine its characteristics.


Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
Y. M. Wang

Presented in this paper is aimed at experimental evaluation of the efficiencies of the multiple direction-optimized friction pendulum system (MDO-FPS) with multiple sliding interfaces in mitigating the seismic responses of motion sensitive equipment through a series of shaking table tests. Experimental tests of motion sensitive equipment isolated with MDO-FPS isolators and subjected to various types of earthquakes were carried out to investigate the efficiency of the MDO-FPS isolator in reducing the response of equipment during earthquakes. Shaking table test results indicate that the acceleration response of the equipment has been remarkably reduced while compared to that of fixed-base equipment.


2006 ◽  
Vol 35 (13) ◽  
pp. 1653-1675 ◽  
Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
Wen-Shin Chen

Seismic mitigation of high-tech facilities is a very important issue in earthquake prone areas such as Taiwan, Japan, U.S.A., etc. In order to lessen vulnerability of earthquake damage of high-tech equipment, base isolation seems to be a good choice. This paper mainly explores the possibility of using a new base isolation system named the trench friction pendulum system (TFPS) to reduce seismic responses of high-tech facilities. The main reasons, from a engineer’s point of view, to use this system for protecting high-tech equipment from earthquake damage are high efficiency and low cost. A series of shaking table tests for a high-tech facility isolated with TFPS isolators were carried out in the Department of Civil Engineering, Feng Chia University, Taichung, Taiwan, ROC. The experimental results show that the proposed system provides a good protection for the high-tech facility during strong earthquakes.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
Yung-Chang Lin

In this paper, a base isolator called a multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. To understand the mechanical behavior of the Multiple DO-FPS isolator under multidirectional excitations, an analytical model called the multiple yield and bounding surfaces model is proposed. On the basis of the derived mathematical formulations for simulation of the characteristics of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect of the Multiple DO-FPS isolator are a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multidirectional excitations can be understood in a simple manner. The analytical results indicate that the natural frequency and damping effect of the Multiple DO-FPS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


Author(s):  
C. S. Tsai ◽  
Yung-Chang Lin ◽  
H.-C. Su

In this paper, a base isolator call the multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. For understanding the mechanical behavior of the Multiple DO-PFS isolator under multi-directional excitations, an analytical model called the multiple yield and bounding surfaces model is also proposed. On the basis of the derived mathematical formulations for the simulation of the characteristic of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect for a Multiple DO-FPS is a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multi-directional excitations can be simply understood. Analytical results infer that the natural frequency and damping effect of the Multiple DO-PFS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.


Author(s):  
C. S. Tsai ◽  
Y. M. Wang ◽  
H. C. Su

Presented in this paper is the performance evaluation of the multiple friction pendulum system (MFPS) with multiple sliding interfaces on seismic mitigation through a series of shaking table tests of a full scale MFPS-isolated building. In the tests, a three-story steel building of 40 tons in total weight, 3m and 4.5m in two horizontal directions and 9m in height, was equipped with MFPS isolators each with 4 sliding interfaces and subjected to various types of earthquakes to examine the efficiency of the isolators in reducing seismic response of a structure. Experimental results from shaking table tests tells that the roof accelerations, base shears, column shear forces have been significantly lessened with negligible residual displacements in the isolators while compared to the responses of a fixed-base structure.


Sign in / Sign up

Export Citation Format

Share Document