Assessment of Various Turbulence Models in a High Pressure Ratio Centrifugal Compressor With an Object Oriented CFD Code

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Luca Mangani ◽  
Ernesto Casartelli ◽  
Sebastiano Mauri

The flow field in a high pressure ratio centrifugal compressor with a vaneless diffuser has been investigated numerically. The main goal is to assess the influence of various turbulence models suitable for internal flows with an adverse pressure gradient. The numerical analysis is performed with a 3D RANS in-house modified solver based on an object-oriented open-source library. According to previous studies from varying authors, the turbulence model is believed to be the key parameter for the discrepancy between experimental and numerical results, especially at high pressure ratios and high mass-flow. Particular care has been taken at the wall, where a detailed integration of the boundary layer has been applied. The results present different comparisons between the models and experimental data, showing the influence of using advanced turbulence models. This is done in order to capture the boundary layer behavior, especially in large adverse pressure gradient single stage machinery.

Author(s):  
Luca Mangani ◽  
Ernesto Casartelli ◽  
Sebastiano Mauri

The flow field in a high pressure ratio centrifugal compressor with vaneless diffuser has been investigated numerically. Main goal is to assess the influence of various turbulence models suitable for internal flows with adverse pressure gradient. The numerical analysis is performed with a 3D RANS in-house modified solver based on an object-oriented open-source library. According to previous studies from varying authors, the turbulence model is believed to be the key parameter for the discrepancy between experimental and numerical results, especially at high pressure ratios and high mass-flow. Particular care has been taken at the wall, where a detailed integration of the boundary layer has been applied. The results presents different comparisons between the models and experimental data showing the influence of using advanced turbulence models. This is done in order to capture the boundary layer behavior, especially in large adverse pressure gradient single stage machinery.


Author(s):  
D. P. Kenny

A novel analysis of the hub and shroud wall boundary layer growth through the diffusing system of a centrifugal compressor is proposed to model the physical processes. It is shown that the diffuser throat blockage and total pressure loss characteristics can be accurately predicted for a 6:1 PR stage. The static pressure effectiveness and stalling limit are successfully predicted qualitatively, but are underestimated and overestimated by 14 and 12 percent respectively. It is argued that diffuser performance is largely controlled by the combined effect of the boundary layer conditions on the hub and shroud walls at impeller exit and the diffusion required to the diffuser throat. For this reason, it is contended that, for best performance at high pressure ratio (≃ 12:1), impeller exit Mach number must be minimized by employing zero to negative prewhirl at impeller entry which in turn maximizes impeller entry shroud relative Mach number. Performance maps are presented for a single-stage centrifugal compressor based on this premise with specific speed = 90. At 15, 12 and 101 PR, 72, 75 and 76.8 percent efficiency, respectively, were attached at 2.6 lb/sec.


Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


2020 ◽  
Vol 33 (6) ◽  
pp. 04020072
Author(s):  
Wenchao Zhang ◽  
Xiao He ◽  
Baotong Wang ◽  
Zhenzhong Sun ◽  
Xinqian Zheng

Author(s):  
Yang Mingyang ◽  
Martines-botas Ricardo ◽  
Deng Kangyao ◽  
Zhang Yangjun ◽  
Zheng Xinqian

Author(s):  
K. K. Botros

Compression systems are designed and operated in a manner to eliminate or minimize the potential for surge, which is a dynamic instability that is very detrimental to the integrity of the compressor unit. Compressor surge can occur when compressors are subjected to rapid transients such as those occurring following an emergency shutdown (ESD) or a power failure, which in turn, requires fast reaction. To prevent this from occurring, compressor stations are designed with single or dual recycle systems with recycle valves, which are required to open upon ESD. There has been extensive debate and confusion as to whether a single recycle or a dual recycle system is required and the circumstances and the conditions under which one system or the other must be used. This paper discusses this crucial design issue in detail and highlights the parameters affecting the decision to employ either system, particularly for high pressure ratio, low inertia compressors. Parameters such as gas volume capacitance (V) in the recycle path, compressor power train inertia, compressor performance characteristics, the recycle valve coefficient (Cv), prestroke and stroke time, and check valve dynamic characteristic are crucial in determining the conditions for dynamic instabilities. A simple analytical methodology based on the perturbation theory is developed that provides a first-cut analysis to determine if a single recycle system is adequate for a given compression system. The concept of an inertia number is then introduced with a threshold value that determines which recycle system to use. Techniques to circumvent compressor surge following ESD are discussed and their respective effectiveness are highlighted including when and if a delay in the fuel cutoff will be effective. An example of a case study with actual field data of a high pressure ratio centrifugal compressor employed in a natural gas compressor station is presented to illustrate the fundamental concept of single versus dual recycle systems.


Author(s):  
Hirotaka Higashimori ◽  
Susumu Morishita ◽  
Masayuki Suzuki ◽  
Tooru Suita

Requirements for aeronautical gas turbine engines for helicopters include small size, low weight, high output, and low fuel consumption. In order to achieve these requirements, development work has been carried out on high pressure ratio compressors with high efficiency. As a result, we have developed a single stage centrifugal compressor with a pressure ratio of 11 for a 1000 shp class gas turbine. This report presents a study on the internal flow of a high pressure ratio centrifugal compressor impeller. The centrifugal compressor is a high transonic compressor with an inlet Mach number of about 1.6. In high inlet Mach number compressors, the flow in the inducer is a complex transonic flow characterized by interaction between the shockwave and boundary layer, while the flow in the middle of the impeller is a distorted flow with a low energy region. In order to ensure the reliability of aerodynamic design technology for such transonic centrifugal compressors, the complex transonic flow and formation of the low energy region predicted by CFD must be actually measured, comparison must be undertaken between the CFD results and the actual flow measurement, and the accuracy and other issues pertaining to CFD must be clarified. In a previous report [12], we elucidated the flow in the inducer of a high transonic impeller by means of LDV and unsteady pressure measurement. That report showed that, in the flow of an inducer with a Mach number of approx. 1.6, the oblique shockwave in the middle of the impeller throat interacts with the blade tip leakage flow, and that reverse flow occurs in the vicinity of the casing. Furthermore, although CFD predicted a low energy region in the splitter portion, this could not be detected in actual measurement. In the context of the current report, comparative verification of the CFD and LDV measurement results was undertaken with respect to the formation of the casing wall surface boundary layer in the transonic flow within the inducer. In this conjunction, inducer bleed was introduced to control this boundary layer, and the effect of the inducer bleed on the flow was ascertained through actual measurement. It was also sought to additionally confirm the “low energy region” in the splitter. Accordingly, the flow velocity distribution was measured at two sections, thereby clarifying the characteristics of the actual flow in the region. The impeller for which measurement was performed has the same specifications as that in the previous report (see Table 1). In the present report, so as to measure the flow under conditions encouraging the formation of a boundary layer accompanying substantial inducer deceleration, measurement was conducted at 95% of design speed and a relative Mach number at the blade tips of about 1.5.


Sign in / Sign up

Export Citation Format

Share Document