rapid transients
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Snapper Richard Myran Magor-Elliott ◽  
Christopher J. Fullerton ◽  
Graham Richmond ◽  
Grant A.D. Ritchie ◽  
Peter A. Robbins

Many models of the body's gas stores have been generated for specific purposes. Here, we seek to produce a more general purpose model that: i) is relevant for both respiratory (CO2 and O2) and inert gases; ii) is based firmly on anatomy and not arbitrary compartments; iii) can be scaled to individuals; and iv) incorporates arterial and venous circulatory delays as well as tissue volumes so that it can reflect rapid transients with greater precision. First, a 'standard man' of 11 compartments was produced, based on data compiled by the International Radiation Protection Commission. Each compartment was supplied via its own parallel circulation, the arterial and venous volumes of which were based on reported tissue blood volumes together with data from a detailed anatomical model for the large arteries and veins. A previously published model was used for the blood gas chemistry of CO2 and O2. It was not permissible ethically to insert pulmonary artery catheters into healthy volunteers for model validation. Therefore, validation was undertaken by comparing model predictions with previously published data and by comparing model predictions with experimental data for transients in gas exchange at the mouth following changes in alveolar gas composition. Overall, model transients were fastest for O2, intermediate for CO2 and slowest for N2. There was good agreement between model estimates and experimentally measured data. Potential applications of the model include estimation of closed-loop gain for the ventilatory chemoreflexes, and improving the precision associated with multibreath washout testing and respiratory measurement of cardiac output.


2020 ◽  
Vol 495 (1) ◽  
pp. 992-999
Author(s):  
J D Lyman ◽  
L Galbany ◽  
S F Sánchez ◽  
J P Anderson ◽  
H Kuncarayakti ◽  
...  

ABSTRACT AT 2018cow was the nearest and best-studied example of a new breed of extragalactic, luminous, and rapidly evolving transient. Both the progenitor systems and explosion mechanisms of these rapid transients remain a mystery – the energetics, spectral signatures, and time-scales make them challenging to interpret in established classes of supernovae and tidal disruption events. The rich, multiwavelength data set of AT 2018cow has still left several interpretations viable to explain the nature of this event. In this paper, we analyze integral-field spectroscopic data of the host galaxy, CGCG 137-068, to compare environmental constraints with leading progenitor models. We find the explosion site of AT 2018cow to be very typical of core-collapse supernovae (known to form from stars with MZAMS ∼ 8−25 M⊙), and infer a young stellar population age at the explosion site of few × 10 Myr, at slightly sub-solar metallicity. When comparing to expectations for exotic intermediate-mass black hole (IMBH) tidal disruption events, we find no evidence for a potential host system of the IMBH. In particular, there are no abrupt changes in metallicity or kinematics in the vicinity of the explosion site, arguing against the presence of a distinct host system. The proximity of AT 2018cow to strong star formation in the host galaxy makes us favour a massive stellar progenitor for this event.


2020 ◽  
Vol 890 (2) ◽  
pp. L26 ◽  
Author(s):  
Kojiro Kawana ◽  
Keiichi Maeda ◽  
Naoki Yoshida ◽  
Ataru Tanikawa

Author(s):  
Enrico Munari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Klaus Brun ◽  
Sarah Simons ◽  
...  

The compressor surge is a phenomenon which has to be avoided since it implies the deterioration of performance and leads to mechanical damage to the compressor and system components. As a consequence, compression system models have a crucial role in predicting the phenomena which can occur in the compressor and pipelines during operation. In this paper, a dynamic model, developed in the matlab/simulink environment, is further implemented to allow the study of surge events caused by rapid transients, such as emergency shutdown events (ESD). The aim is to validate the model using the experimental data obtained in a single-stage centrifugal compressor installed in the test facility at Southwest Research Institute. The test facility consists of a closed loop system and is characterized by a recycling circuit, and thus a recycling valve, which is opened in case of surge or driver shutdown. Simulations were carried out at 17,800 and 19,800 rpm; the comparison with experimental data showed the accuracy of the model in simulating different opening rates and different sizes of the recycle valve, at both low and high suction pressure (HSP). Moreover, different actions for recovering/preventing surge were simulated by controlling different valves along the piping system and by adding a check valve immediately downstream the compressor. The results demonstrated the fidelity of the model and its capability of simulating piping systems with different configurations and components, also showing, qualitatively, the different effects of some alternative actions which can be taken after surge onset.


Author(s):  
Enrico Munari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Klaus Brun ◽  
Sarah Simons ◽  
...  

Industrial compressors suffer from strong aerodynamic instability that arises when low ranges of flow rate are achieved; this instability is called surge. This phenomenon creates strong vibrations and forces acting on the compressor and system components due to the fact that it produces variable time-averaged mass flow and pressure. Therefore, surge is dangerous not only for aerodynamic structures but also for mechanical parts. Surge is usually prevented in industrial plants by means of anti-surge systems, which act as soon as surge occurs; however, some rapid transients or system upsets can lead the compressor to surge anyway. Despite the fact that surge can be classified as mild, classic, or deep, depending on the amplitudes and frequency of the fluctuations, operators are used to simply referring to surge, without making a distinction between the three main classes. This is one of the reasons why, when surge occurs in industrial plants, it is a common practice to stop the machine to perform inspections and check if any damage occurred. Obviously, this implies maintenance costs and time, during which the machine does not operate. On the other hand, not all surge events are dangerous in terms of damage, and they can be tolerated by the mechanical structures of the compressor; thus, in these cases, inspections would not be required. Unfortunately, a method for establishing the potential damage of a surge event is not available in literature. In order to fill this gap, this paper proposes a final formulation of a surge severity index, which was only preliminarily formulated by the authors in a previous work. The preliminary form of this coefficient demonstrated some limitations, which are overcome in this paper. The surge severity index derives from an energy-force based analysis. The coefficient demonstration is carried out in this paper by means of (i) the application of the Buckingham's Pi-theorem, and (ii) a careful analysis of the causative and restorative factors of surge. Finally, some simple practical evaluations are shown by means of a sensitivity analysis, using simulation results of an existing model, to effectively further highlight the consistency of this coefficient for industry.


Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. 1358-1363 ◽  
Author(s):  
David R. Carlson ◽  
Daniel D. Hickstein ◽  
Wei Zhang ◽  
Andrew J. Metcalf ◽  
Franklyn Quinlan ◽  
...  

Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub–optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.


Author(s):  
Shuiting Ding ◽  
Hang Yu ◽  
Tian Qiu ◽  
Chuankai Liu

The internal air system, as one of the important subsystems of the aeroengine, is used to cooling and sealing, and plays a vital role in the safe operation of the engine. Especially in rapid transients, the complex dynamic response in air system may impose hazardous transition state loads on engine. Cavity is a component with pretty evident characteristics of transient in the air system due to the storage and release effects on the air. The flow and heat transfer characteristics of cavity should be made clear to precisely quantify the performance of the air system. The traditional study on cavity is based on the adiabatic assumption. However, the assumption is applicable to the transient of millisecond time scales physical phenomena in the air system, which is not usually common. Generally, the actual transition process is not instantaneous. Great discrepancies exist in the process of transition predicted by the adiabatic hypothesis compared with the practical process. The objective of this work is to propose a feasible method to solve the heat transfer issue throughout the transient process, which has not been settled by a proper method before, and develop a model for simulating the transient responses of the cavity with consideration of the heat transfer effect on the basis of the method. The model can predict transient responses under different thermal boundary conditions. Experiments have been developed for investigation of the charging process of the cavity. The thermal boundary can be controlled in the experiment, and the pressure and temperature responses of the cavity under different thermal boundary conditions have been analyzed. The non-dimensional numbers related to heat transfer characteristics were deduced by dimensional analysis, and the empirical formula of characteristics was proposed based on the experimental results. The non-adiabatic low-dimensional transient model of the cavity was established based on the heat transfer characteristics correlation. Results of transient responses calculated by non-adiabatic model were compared with the experimental data. It is found that both the transient responses of pressure and temperature agree well, with the maximum relative errors less than 2%. By comparison, the relative errors of pressure and temperature calculated by adiabatic model are about 8% and 12%, respectively. Meanwhile, the tendency of temperature response deviates from the actual process. Thus, the modeling method proposed is feasible and high-precision. The present work provides a technical method for establishing a low-dimensional model to describe the transient responses of the cavity with high accuracy, and supports the component-level modeling of the transient air system.


Author(s):  
Enrico Munari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Klaus Brun ◽  
Sarah Simons ◽  
...  

Despite advancements in research and industry, compressors still have to operate in the stable region of the characteristic curves otherwise, at low flow ranges, they enter an unstable regime. The worst instability that can arise in industrial compressors is called surge, which involves the whole system in view of the fact that it generates dangerous pressure and mass flow fluctuations. Thus, this phenomenon has to be prevented since it implies the deterioration of performance and leads to mechanical damage to the compressor and system components. It is clear that, currently, compression system models have a crucial role in predicting the phenomena which can occur in the compressor and pipelines during operation. In this paper, a dynamic model, developed in the Matlab/Simulink environment, is further implemented to allow the study of surge events caused by rapid transients, such as emergency shutdown events (ESD). The aim is to validate the experimental data obtained in a single stage centrifugal compressor installed in the test facility at Southwest Research Institute. The test facility consists of a closed loop system and is characterized by a recycling circuit, and thus a recycling valve, which is opened in case of surge or driver shutdown. In this work, the recycling circuit is implemented in the model as well, and comparisons between recorded data and simulations were carried out. Moreover, different actions for recovering/preventing surge are simulated by controlling different valves along the piping system and by adding a check valve immediately downstream the compressor. The results demonstrated the fidelity of the model and its capability of simulating piping systems with different configurations and components, also showing, qualitatively, the different effects of some alternative actions which can be taken after surge onset.


Author(s):  
Enrico Munari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Klaus Brun ◽  
Sarah Simons ◽  
...  

Industrial compressors suffer from strong aerodynamic instability that arises when low ranges of flow rate are achieved; this instability is called surge. This phenomenon creates strong vibrations and forces acting on the compressor and system components due to the fact that it produces variable time averaged mass flow and pressure. Therefore, surge is dangerous not only for aerodynamic structures but also for mechanical parts. Surge is usually prevented in industrial plants by means of anti-surge systems which act as soon as surge occurs, however some rapid transients or system upsets can lead the compressor to surge anyway. Despite the fact that surge can be classified as mild, classic or deep, depending on the amplitudes and frequency of the fluctuations, operators are used to simply referring to surge, without making a distinction between the three main classes. This is one of the reasons why, when surge occurs in industrial plants, it is common practice to stop the machine to perform inspections and check if any damage occurred. Obviously, this implies maintenance costs and time, during which the machine does not operate. On the other hand, not all surge events are dangerous in terms of damage, and they can be tolerated by the mechanical structures of the compressor; thus, in these cases, inspections would not be required. Unfortunately, a method for establishing the potential damage of a surge event is not available in literature. In order to fill this gap, this paper proposes a final formulation of a surge severity index, which was only preliminarily formulated by the authors in a previous work. The preliminary form of this coefficient demonstrated some limitations which are overcome in this paper. The surge severity index derives from an energy-force based analysis. The coefficient demonstration is carried out in this paper by means of i) the application of the Buckingham’s Pi-theorem, and ii) a careful analysis of the causative and restorative factors of surge. Finally, some simple practical evaluations are shown by means of a sensitivity analysis, using simulation results of an existing model, to effectively further highlight the consistency of this coefficient for industry.


Author(s):  
Hilal Bahlawan ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Mauro Venturini

This paper documents the setup and validation of nonlinear autoregressive network with exogenous inputs (NARX) models of a heavy-duty single-shaft gas turbine (GT). The data used for model training are time series datasets of several different maneuvers taken experimentally on a GT General Electric PG 9351FA during the start-up procedure and refer to cold, warm, and hot start-up. The trained NARX models are used to predict other experimental datasets, and comparisons are made among the outputs of the models and the corresponding measured data. Therefore, this paper addresses the challenge of setting up robust and reliable NARX models, by means of a sound selection of training datasets and a sensitivity analysis on the number of neurons. Moreover, a new performance function for the training process is defined to weigh more the most rapid transients. The final aim of this paper is the setup of a powerful, easy-to-build and very accurate simulation tool, which can be used for both control logic tuning and GT diagnostics, characterized by good generalization capability.


Sign in / Sign up

Export Citation Format

Share Document