Description of Methods for the Eigenvalue Analysis of Railroad Vehicles Including Track Flexibility

Author(s):  
José L. Escalona ◽  
Rosario Chamorro ◽  
Antonio M. Recuero

The stability analysis of railroad vehicles using eigenvalue analysis can provide essential information about the stability of the motion, ride quality, or passengers’ comfort. The eigenvalue analysis follows three steps: calculation of steady motion, linearization of the equations of motion, and eigenvalue calculation. This paper deals with different numerical methods that can be used for the eigenvalue analysis of multibody models of railroad vehicles that can include deformable tracks. Depending on the degree of nonlinearity of the model and coordinate selection, different methodologies can be used. A direct eigenvalue analysis is used to analyze the vehicle dynamics from the differential-algebraic equations of motion written in terms of a set of constrained coordinates. As an alternative, the equations of motion can be obtained in terms of independent coordinates taking the form of ordinary differential equations. This procedure requires more computations, but the interpretation of the results is straightforward.

Author(s):  
Jose´ L. Escalona ◽  
Rosario Chamorro ◽  
Antonio M. Recuero

The stability analysis of railroad vehicles using eigenvalue analysis can provide essential information about the stability of the motion, ride quality or passengers comfort. The system eigenvalues are not in general a vehicle property but a property of a vehicle travelling steadily on a periodic track. Therefore the eigenvalue analysis follows three steps: calculation of steady motion, linearization of the equations of motion and eigenvalue calculation. This paper deals with different numerical methods that can be used for the eigenvalue analysis of multibody models of railroad vehicles that can include deformable tracks. Depending on the degree of nonlinearity of the model, coordinate selection or the coordinate system used for the description of the motion, different methodologies are used in the eigenvalue analysis. A direct eigenvalue analysis is used to analyse the vehicle dynamics from the differential-algebraic equations of motion written in terms of a set of constrained coordinates. In this case not all the obtained eigenvalues are related to the dynamics of the system. As an alternative the equations of motion can be obtained in terms of independent coordinates taking the form of ordinary differential equations. This procedure requires more computations but the interpretation of the results is straightforward.


1999 ◽  
Vol 121 (4) ◽  
pp. 594-598 ◽  
Author(s):  
V. Radisavljevic ◽  
H. Baruh

A feedback control law is developed for dynamical systems described by constrained generalized coordinates. For certain complex dynamical systems, it is more desirable to develop the mathematical model using more general coordinates then degrees of freedom which leads to differential-algebraic equations of motion. Research in the last few decades has led to several advances in the treatment and in obtaining the solution of differential-algebraic equations. We take advantage of these advances and introduce the differential-algebraic equations and dependent generalized coordinate formulation to control. A tracking feedback control law is designed based on a pointwise-optimal formulation. The stability of pointwise optimal control law is examined.


Author(s):  
Jose´ L. Escalona ◽  
Rosario Chamorro

In this paper a systematic procedure for evaluating the steady curving of railroad vehicles is developed. The equations of motion obtained using multibody dynamics and the elastic contact method are used to this end. The method proposed can deal with flange contact of the wheels. Two coordinate transformations are needed to evaluate the steady curving as an equilibrium position of the system instead of a periodic orbit. The stability of the motions is also evaluated by using a special eigenvalue analysis of the equations of motion. The procedure developed simplifies significantly the analysis of the curving performance of railroad vehicles without loosing accuracy or generality. The paper includes as a numerical example the steady motion of an unsuspended wheelset. The comparison of the numerical results with classical theories shows the accuracy of the method proposed.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2003 ◽  
Vol 125 (2) ◽  
pp. 291-300 ◽  
Author(s):  
G. H. Jang ◽  
J. W. Yoon

This paper presents an analytical method to investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Paul S. Ryan ◽  
Sarah C. Baxter ◽  
Philip A. Voglewede

Abstract Understanding how variation impacts a multibody dynamic (MBD) system's response is important to ensure the robustness of a system. However, how the variation propagates into the MBD system is complicated because MBD systems are typically governed by a system of large differential algebraic equations. This paper presents a novel process, variational work, along with the polynomial chaos multibody dynamics (PCMBoD) automation process for utilizing polynomial chaos theory (PCT) in the analysis of uncertainties in an MBD system. Variational work allows the complexity of the traditional PCT approach to be reduced. With variational work and the constrained Lagrangian formulation, the equations of motion of an MBD PCT system can be constructed using the PCMBoD automated process. To demonstrate the PCMBoD process, two examples, a mass-spring-damper and a two link slider–crank mechanism, are shown.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Leping Sun ◽  
Yuhao Cong

This paper is concerned with the asymptotic stability of delay differential-algebraic equations. Two stability criteria described by evaluating a corresponding harmonic analytical function on the boundary of a certain region are presented. Stability regions are also presented so as to show the method geometrically. Our results are not reported.


Sign in / Sign up

Export Citation Format

Share Document