scholarly journals Assessment of Linearization Approaches for Multibody Dynamics Formulations

Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.

Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado

The dynamics equations of multibody systems are often expressed in the form of a system of highly nonlinear Differential Algebraic Equations (DAEs). Some applications of multibody dynamics, however, require a linear expression of the equations of motion. Such is the case of the plant representations demanded by a wide variety of control algorithms and the system models needed by state estimators like Kalman filters. The choice of generalized coordinates used to describe a mechanical system greatly influences the behavior of the resultant linearized models and the way in which they convey information about the original system dynamics. Several approaches to arrive at the linearized dynamics equations have been proposed in the literature. In this work, these were categorized into three major groups, defined by the way in which the kinematic constraints are handled. The properties of each approach and the differences between them were studied through the linearization of the dynamics of a simple example with a method representative of each class.


2022 ◽  
Vol 12 (2) ◽  
pp. 890
Author(s):  
Paweł Dra̧g

An optimization task with nonlinear differential-algebraic equations (DAEs) was approached. In special cases in heat and mass transfer engineering, a classical direct shooting approach cannot provide a solution of the DAE system, even in a relatively small range. Moreover, available computational procedures for numerical optimization, as well as differential- algebraic systems solvers are characterized by their limitations, such as the problem scale, for which the algorithms can work efficiently, and requirements for appropriate initial conditions. Therefore, an αDAE model optimization algorithm based on an α-model parametrization approach was designed and implemented. The main steps of the proposed methodology are: (1) task discretization by a multiple-shooting approach, (2) the design of an α-parametrized system of the differential-algebraic model, and (3) the numerical optimization of the α-parametrized system. The computations can be performed by a chosen iterative optimization algorithm, which can cooperate with an outer numerical procedure for solving DAE systems. The implemented algorithm was applied to solve a counter-flow exchanger design task, which was modeled by the highly nonlinear differential-algebraic equations. Finally, the new approach enabled the numerical simulations for the higher values of parameters denoting the rate of changes in the state variables of the system. The new approach can carry out accurate simulation tests for systems operating in a wide range of configurations and created from new materials.


Author(s):  
Hamid M. Lankarani ◽  
Behnam Bahr ◽  
Saeid Motavalli

Abstract This paper presents the description of an ideal tool for analysis and design of complex multibody mechanical systems. It is in the form of a general-purpose computer program, which can be used for simulation of many different systems. The generality of this computer-integrated environment allows a wide range of applications with significant engineering importance. No matter how complicated the mechanical system under consideration is, a numerical multibody model of the system is constructed. The governing mixed differential/algebraic equations of motion are automatically formulated and numerically generated. State-of-the-art numerical techniques and computational methods are employed and developed which produce in the response of the system at discrete time junctures. Postprocessing of the results in the form of graphical images or real-time animations provides an enormous aid in visualizing motion of the system. The analysis package may be merged with an efficient design optimization algorithm. The developed integrated analysis/design system is a valuable tool for researchers, design engineers, and analysts of mechanical systems. This computer-integrated tool provides an important bridge between the classical decision making process by an engineer and the emerging technology of computers.


Author(s):  
Edward J. Haug ◽  
Mirela Iancu ◽  
Dan Negrut

Abstract An implicit numerical integration approach, based on generalized coordinate partitioning of the descriptor form of the differential-algebraic equations of motion of multibody dynamics, is presented. This approach is illustrated for simulation of stiff mechanical systems using the well known Newmark integration method from structural dynamics. Second order Newmark integration formulas are used to define independent generalized coordinates and their first time derivative as functions of independent accelerations. The latter are determined as the solution of discretized equations obtained using the descriptor form of the equations of motion. Dependent variables in the formulation, including Lagrange multipliers, are determined to satisfy all the kinematic and kinetic equations of multibody dynamics. The approach is illustrated by solving the constrained equations of motion for mechanical systems that exhibit stiff behavior. Results show that the approach is robust and has the capability to integrate differential-algebraic equations of motion for stiff multibody dynamic systems.


Author(s):  
Dan Negrut ◽  
Edward J. Haug

Abstract Three methods for the state-space based implicit integration of differential-algebraic equations of multibody dynamics are summarized and numerically compared. In the state-space approach, the time evolution of a mechanical system is characterized using a number of generalized coordinates equal with the number of degrees of freedom of the system. In this paper these independent generalized coordinates are a subset of the Cartesian position coordinates and orientation Euler parameters of body centroidal reference frames. Depending on the method, the independent generalized coordinates are implicitly integrated and dependent quantities (including Lagrange multipliers) are determined to satisfy constraint equations at position, velocity, and acceleration levels. Five computational algorithms based on the proposed methods are used to simulate the motion of a stiff 14-body vehicle model. Results show that the proposed methods deal effectively with challenges posed by stiff mechanical system simulation. A comparison with a state-space based explicit algorithm for the simulation of the same model indicates a speed-up of approximately two orders of magnitude.


Author(s):  
André Laulusa ◽  
Olivier A. Bauchau

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: The sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential-algebraic equations in the presence of holonomic constraints, are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


2021 ◽  
Author(s):  
Jay Taves ◽  
Alexandra Kissel ◽  
Dan Negrut

Abstract We compare three solution approaches that use the index 3 set of differential algebraic equations (DAEs) to solve the constrained multibody dynamics problem through straight discretization via an implicit time integrator. The first approach is described in a companion paper and dwells on the connection between the orientation matrix and the SO(3) group. Its salient point is that the orientation matrix A is a problem unknown, directly computed without resorting to the use of other position-level generalized coordinates such as Euler angles or Euler parameters. The second approach employs Euler angles as part of the position-level generalized coordinates, and uses them to subsequently evaluate the orientation matrix A. The third approach replaces the Euler angles with Euler parameters (quaternions). The numerical integration method of choice in this contribution is first order implicit Euler. We report a similar number of iterations for convergence for all solution implementations (called rA, rε, and rp); we also observed an approximately twofold speedup of rA over rp and rε. The tests were carried out in conjunction with three models: simple pendulum, slider crank, and four-link mechanism. These simulation results were obtained using two Python simulation engines that were developed independently as part of this formulation comparison undertaking. The codes are available in a GitHub public repository and were developed to provide two different perspectives on the formulation performance issue. The improvements in simulation speed are traced back to a simpler form of the equations of motion and more concise Jacobians that enter the numerical solution. It remains to investigate whether these speed gains carry to higher order integration formulas, where the underlying Lie-group structure of SO(3) brings additional complexity in the rA solution.


Author(s):  
Olivier A. Bauchau ◽  
Andre´ Laulusa

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: the sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential algebraic equations are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. Finally, alternative approaches to dealing with high index differential algebraic equations, based on index reduction techniques, are reviewed and discussed. Constraint violation stabilization techniques that have been developed to control constraint drift are also reviewed. These techniques are used in conjunction with algorithms that do not exactly enforce the constraints. Control theory forms the basis for a number of these methods. Penalty based techniques have also been developed, but the augmented Lagrangian formulation presents a more solid theoretical foundation. In contrast to constraint violation stabilization techniques, constraint violation elimination techniques enforce exact satisfaction of the constraints, at least to machine accuracy. Finally, as the finite element method has gained popularity for the solution of multibody systems, new techniques for the enforcement of constraints has been developed in that framework. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


Author(s):  
L. Federico ◽  
A. Russo

Rotorcraft dynamics represents a major analytical challenge to aeronautical industry and research centres. Complexities arising from large rigid motions, body elasticity, aerodynamic loads and control systems have to be taken into account in order to ensure the accuracy of a comprehensive analysis. Architected for the nonlinearities associated with large motion in three-dimensional space, the ADAMS general-purpose multibody code allows to automatically formulate and integrate the equations of motion for a wide range of mechanisms, including rotary wing systems (once provided with an aerodynamic force field description). However, the ADAMS simulation system lacks the capability to calculate periodic motions, as required in the helicopter trim analysis and stability evaluation. The prediction of the trimmed periodic motions of the rotor system implies the numerical solution of differential-algebraic boundary value problem. In this work we present a new approach to perform this task inside the ADAMS numerical environment. Thia approach is based on the perturbation of the minimal set of Ordinary Differential Equations (ODEs), being equivalent to the original system of Differential Algebraic Equations (DAEs) which defines the rotorcraft equation of motion. The transformation of DAEs to ODEs is based on the linearization of the local constraint manifold defined by the algebraic constraint equations, as suggested by Maggi in his work [1–3]. The proposed method is quite general and can be used to drive the ADAMS integration scheme within the periodic motion analysis of mechanical systems. The algotithm is adopted to simulate the wind tunnel trim test of a ECD BO105 machscaled model (EU HeliNOVI project [4]). Comparisons between numerical and experimental results are provided.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


Sign in / Sign up

Export Citation Format

Share Document