scholarly journals Contact Analyses for Anisotropic Half Space: Effect of the Anisotropy on the Pressure Distribution and Contact Area

2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Caroline Bagault ◽  
Daniel Nélias ◽  
Marie-Christine Baietto

A contact model using semi-analytical methods, relying on elementary analytical solutions, has been developed. It is based on numerical techniques adapted to contact mechanics, with strong potential for inelastic, inhomogeneous or anisotropic materials. Recent developments aim to quantify displacements and stresses of an anisotropic material contacting both an isotropic or anisotropic material. The influence of symmetry axes on the contact solution will be more specifically analyzed.

Author(s):  
C. Bagault ◽  
D. Nélias ◽  
M.-C. Baietto

A contact model using semi analytical methods, relying on elementary analytical solutions, has been developed. It is based on numerical techniques adapted to contact mechanics, with strong potential for inelastic, inhomogeneous or anisotropic problems. Recent developments aim to quantify displacements and stresses of an anisotropic half space with an anisotropic coating which is in contact with a rigid sphere. The influence of symmetry axes on the contact problem solution will be more specifically analyzed.


Author(s):  
Roman Riznychuk

Contact problem of the frictionless indentation of elastic half-space by smooth rigid punch of curved profile is investigated. An exact expression of the contact pressure distribution for a curved profile punch in terms of integral involving the pressure distribution for sequence of flat punches is derived. The method is illustrated and validated by comparison with some well-known analytical solutions.


Author(s):  
C. Bagault ◽  
M.-C. Baietto ◽  
D. Ne´lias

A contact model using semi analytic methods, relying on elementary analytic solutions, has been developed. It is based on numeric techniques adapted to contact mechanics, with strong potential for inelastic, inhomogeneous or anisotropic problems. Recent developments aim to quantify displacements and stresses of an anisotropic material which is in contact with another anisotropic material. The influence of symmetry axes on the contact problem solution will be more specifically analyzed.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Tugce Kasikci ◽  
Sinan Müftü

Contact mechanics in wrapping a thin-shell (tape/web) around a grooved cylindrical surface (roller) under tension is investigated. The problem is analyzed along the axial direction of the roller, and the effects of wrap-angle tape/web motion are neglected. Equations of equilibrium admit analytical solutions, but the problem is nonlinear due to the unknown nature of contact area. The tape bends into the grooves and makes contact over the lands. Three distinct contact states describe the interaction of the tape/web with respect to the lands. Nondimensional analysis shows that contact state depends on the width of the groove and the land, and the nondimensional belt-wrap pressure only modulates the amplitude of the deflected profile.


Author(s):  
P. Ogar ◽  
S. Belokobylsky ◽  
D. Gorokhov ◽  
V. Elsukov

Initially, the contact of a single spherical asperity is considered with taking into account the influence of the remaining contacting asperities. It is assumed that the influence of the remaining contacting asperities is equal to the action of the uniform loading qc outside the asperity contour. This made possible to solve the contact problem as an axisymmetric one. An equation for the pressure distribution at the contact area is obtained. To determine the contact characteristics, a discrete roughness model is used, the surface bearing curve of which is described by a regularized beta function. The relative contact area and the gap density in the joint are determined depending on the dimensionless force elastic-geometric parameter fq. When determining the gap density in the joint, the displacements of the rough surface and half-space are taken into account. It is shown that the contact characteristics do not depend on the values of the regularized beta function parameters p and q.


Author(s):  
C. Bagault ◽  
D. Nélias ◽  
M.-C. Baietto ◽  
T. Ovaert

For most composite and mono-crystal materials their compositions or the elaboration and manufacturing processes imply that it exists one or two main directions or even a general anisotropy. Moreover, coatings are often used to prevent or control wear. Coatings do not have, generally, the same properties as the substrate and may have various thicknesses. The influence of the anisotropy orientations (in the coating and in the substrate) have to be taken into account to better predict the distribution of the contact pressure and the subsurface stress-field in order to optimize the service life of industrial components. A contact model using semi analytical methods, relying on elementary analytical solutions, has been developed. It is based on numerical techniques adapted to contact mechanics. Recent developments aim to quantify displacements and stresses of a layered anisotropic elastic half space which is in contact with a rigid sphere. The influence of material properties and layer thickness on the contact problem solution will be more specifically analyzed.


1995 ◽  
Vol 23 (4) ◽  
pp. 238-255 ◽  
Author(s):  
E. H. Sakai

Abstract The contact conditions of a tire with the road surface have a close relationship to various properties of the tire and are among the most important characteristics in evaluating the performance of the tire. In this research, a new measurement device was developed that allows the contact stress distribution to be quantified and visualized. The measuring principle of this device is that the light absorption at the interface between an optical prism and an evenly ground or worn rubber surface is a function of contact pressure. The light absorption can be measured at a number of points on the surface to obtain the pressure distribution. Using this device, the contact pressure distribution of a rubber disk loaded against a plate was measured. It was found that the pressure distribution was not flat but varied greatly depending upon the height and diameter of the rubber disk. The variation can be explained by a “spring” effect, a “liquid” effect, and an “edge” effect of the rubber disk. Next, the measurement and image processing techniques were applied to a loaded tire. A very high definition image was obtained that displayed the true contact area, the shape of the area, and the pressure distribution from which irregular wear was easily detected. Finally, the deformation of the contact area and changes in the pressure distribution in the tread rubber block were measured when a lateral force was applied to the loaded tire.


Sign in / Sign up

Export Citation Format

Share Document