Stress Distribution and Plastic Deformation in Rotating Cylinders of Strain-Hardening Material

1959 ◽  
Vol 26 (1) ◽  
pp. 25-30
Author(s):  
E. A. Davis ◽  
F. M. Connelly

Abstract Equations for the stress distribution in plastic rotating cylinders are developed for both hollow and solid cylinders. It is assumed that the stress-strain relations may depend upon either the maximum shearing stress or the octahedral shearing stress and the corresponding shearing strain. A triaxiality factor proportional to the ratio of the hydrostatic tension to the octahedral shearing stress is introduced. This factor may be useful in evaluating the ductility of metals under combined stress.

1947 ◽  
Vol 14 (2) ◽  
pp. A147-A153
Author(s):  
W. R. Osgood

Abstract Combined-stress tests were made on five 24S-T aluminum-alloy tubes, 1 3/4 in. ID × 0.05 in. thick. The ratios of circumferential (hoop) stress to axial stress were 0, 1/2, 1, 2, and ∞. The tubes were tested to failure and sufficient measurements of circumferential strain and axial strain were taken to plot stress-strain curves almost up to rupture. The results are presented in the form of two sets of stress-strain curves for each ratio of stresses, namely, maximum shearing stress plotted against maximum shearing strain, and octahedral shearing stress plotted against octahedral shearing strain. In each plot the maximum deviation of the curves is about ± 5 per cent. A method of evaluating small octahedral shearing strains from the data is given which does not assume Poisson’s ratio to be 1/2.


1960 ◽  
Vol 27 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Bernard Budiansky ◽  
O. L. Mangasarian

With the use of J2 deformation theory, the stress-concentration factor at a circular hole in an infinite sheet of strain-hardening material subjected to equal biaxial tension at infinity is found for a variety of representative materials. The analysis exploits a transformation which permits the calculation of the stress-concentration factor without determining the stress distribution in the sheet. Subsequent calculations reveal that, for a monotonically increasing applied stress, the stress history at all points in the sheet is nearly radial.


2020 ◽  
Vol 0 (9) ◽  
pp. 16-23
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

The results of an experimental check of the obtained theoretical formulae allowing us to determine the most important parameters of extrusion cartridges with a counterpunch for different hollow radiuses and bottom-most part thicknesses are presented. Characteristics of used tools, geometric parameters of extrusion experiments, strength characteristics of deformed materials and lubricants are described in detail. Both strain-hardening material and strain-unhardening material were studied. Methodology of the theoretical calculations is demonstrated in detail. High accuracy of the obtained design formulae was confirmed.


1949 ◽  
Vol 16 (2) ◽  
pp. 139-148
Author(s):  
R. P. Eddy ◽  
F. S. Shaw

Abstract Using relaxation methods, an approximate numerical solution is found of the stress distribution in a shaft of rotational symmetry, which is subjected to a torque of sufficient magnitude to cause portions of the material to yield. It is assumed that the material of which the shaft is composed is isotropic and yields according to the condition of von Mises. The particular problem investigated is a shaft with a collar; results are presented showing the elastoplastic boundary, and the stress distribution, for two different amounts of plastic deformation.


2011 ◽  
Vol 70 ◽  
pp. 458-463 ◽  
Author(s):  
A. F. Robinson ◽  
Janice M. Dulieu-Barton ◽  
S. Quinn ◽  
R. L. Burguete

In some metals it has been shown that the introduction of plastic deformation or strain modifies the thermoelastic constant, K. If it was possible to define the magnitude of the change in thermoelastic constant over a range of plastic strain, then the plastic strain that a material has experienced could be established based on a measured change in the thermoelastic constant. This variation of the thermoelastic constant and the ability to estimate the plastic strain that has been experienced, has potential to form the basis of a novel non-destructive, non-contact, full-field technique for residual stress assessment using thermoelastic stress analysis (TSA). Recent research has suggested that the change in thermoelastic constant is related to the material dislocation that occurs during strain hardening, and thus the change in K for a material that does not strain harden would be significantly less than for a material that does. In the work described in this paper, the change in thermoelastic constant for three materials (316L stainless steel, AA2024 and AA7085) with different strain hardening characteristics is investigated. As the change in thermoelastic response due to plastic strain is small, and metallic specimens require a paint coating for TSA, the effects of the paint coating and other test factors on the thermoelastic response have been considered.


Sign in / Sign up

Export Citation Format

Share Document