Combined-Stress Tests on 24S-T Aluminum-Alloy Tubes

1947 ◽  
Vol 14 (2) ◽  
pp. A147-A153
Author(s):  
W. R. Osgood

Abstract Combined-stress tests were made on five 24S-T aluminum-alloy tubes, 1 3/4 in. ID × 0.05 in. thick. The ratios of circumferential (hoop) stress to axial stress were 0, 1/2, 1, 2, and ∞. The tubes were tested to failure and sufficient measurements of circumferential strain and axial strain were taken to plot stress-strain curves almost up to rupture. The results are presented in the form of two sets of stress-strain curves for each ratio of stresses, namely, maximum shearing stress plotted against maximum shearing strain, and octahedral shearing stress plotted against octahedral shearing strain. In each plot the maximum deviation of the curves is about ± 5 per cent. A method of evaluating small octahedral shearing strains from the data is given which does not assume Poisson’s ratio to be 1/2.

2014 ◽  
Vol 919-921 ◽  
pp. 29-34 ◽  
Author(s):  
Jian Chin Lim ◽  
Togay Ozbakkloglu

It is well established that lateral confinement of concrete enhances its axial strength and deformability. It is often assumed that, at a same level of confining pressure, the axial compressive stress and strain of fiber reinforced polymer (FRP)-confined concrete at a given lateral strain are the same as those in concrete actively confined concrete. To assess the validity of this assumption, an experimental program relating both types of confinement systems was conducted. 25 FRP-confined and actively confined high-strength concrete (HSC) specimens cast from a same batch of concrete were tested under axial compression. The axial stress-strain and lateral strain-axial strain curves obtained from the two different confinement systems were assessed. The results indicate that, at a given axial strain, lateral strains of actively confined and FRP-confined concretes correspond, when they are subjected to the same lateral confining pressure. However, it is observed that, at these points of intersections on axial strain-lateral strain curves, FRP-confined concrete exhibits a lower axial stress than the actively confined concrete, indicating that the aforementioned assumption is not accurate. The test results indicate that the difference in the axial stresses of FRP-confined and actively confined HSC becomes more significant with an increase in the level of confining pressure.


2015 ◽  
Vol 1119 ◽  
pp. 760-765
Author(s):  
Thomas Vincent ◽  
Togay Ozbakkloglu

This paper reports on an experimental investigation on the influence of FRP-to-concrete interface gap, caused by concrete shrinkage, on axial compressive behavior of concrete-filled FRP tube (CFFT) columns. A total of 12 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured. 3 of these specimens were instrumented to monitor long term shrinkage strain development and the remaining 9 were tested under monotonic axial compression. The influence of concrete shrinkage was examined by applying a gap of up to 0.06 mm thickness at the FRP-to-concrete interface, simulating 800 microstrain of shrinkage in the radial direction. Axial strain recordings were compared on specimens instrumented with two different measurement methods: full-and mid-height linear variable displacement transformers (LVDTs). Results of the experimental study indicate that the influence of interface gap on stress-strain behavior is significant, with an increase in interface gap resulting in a decrease and increase in the compressive strength and ultimate axial strain, respectively. It was also observed that an increase in interface gap leads to a slight loss in axial stress at the transition region of the stress-strain curve. Finally, it is found that an increase in the interface gap results in a significant decrease in the ratio of the ultimate axial strains obtained from mid-section and full-height LVDTs.


Author(s):  
G. Shen ◽  
W. R. Tyson

A stress-strain equation of Ramberg-Osgood type is proposed to correlate the longitudinal stress with longitudinal strain of a thin plate when a constant stress is applied transversely. The same approach can be used to correlate the axial stress with axial strain for a thin-walled pipe in axial tension with internal pressure. The proposed stress-strain equation relating the longitudinal stress and strain closely approximates that of deformation theory. The effect of a secondary stress (hoop stress) on the J-integral for a circumferential crack in a pipe under axial load and internal pressure is evaluated by finite element analysis (FEA). The results show that the J-integral decreases with internal pressure at a given axial stress but increases with internal pressure at a given axial strain. It is concluded that while a secondary stress may be safely neglected in a stress-based format because it decreases the driving force at a given applied stress, it should not be neglected in a strain-based format because it significantly increases the driving force at a given applied strain.


1959 ◽  
Vol 26 (1) ◽  
pp. 25-30
Author(s):  
E. A. Davis ◽  
F. M. Connelly

Abstract Equations for the stress distribution in plastic rotating cylinders are developed for both hollow and solid cylinders. It is assumed that the stress-strain relations may depend upon either the maximum shearing stress or the octahedral shearing stress and the corresponding shearing strain. A triaxiality factor proportional to the ratio of the hydrostatic tension to the octahedral shearing stress is introduced. This factor may be useful in evaluating the ductility of metals under combined stress.


1952 ◽  
Vol 19 (4) ◽  
pp. 485-488
Author(s):  
L. W. Hu ◽  
Joseph Marin

Abstract To distinguish between the various theories of plastic flow defining plastic stress-strain relations under combined stresses, it is necessary to conduct combined stress tests in which the ratio of the stress components does not remain constant during the test. To compare these results with the flow theory of the second stress-invariant type, graphical methods have been used to determine the combined plastic stress-strain relations based upon the simple tension plastic stress-strain relations. This paper presents an analytical procedure for the determination of these theoretical stress-strain relations. For certain stress conditions the graphical methods have the disadvantage of yielding inaccurate results—an objection not present in the proposed method. Furthermore, the proposed analytical method is less time-consuming than the graphical methods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hongqing Zhu ◽  
Shuhao Fang ◽  
Yilong Zhang ◽  
Yan Wu ◽  
Jinlin Guo ◽  
...  

Abstract To research the dynamic response characteristics of coal mass under impact loads, based on LS-DYNA software, rigid body bars are simulated to impact coal mass under different speed conditions, and the dynamic distribution characteristics of the stress, strain and energy of coal mass are analyzed. The results demonstrate that (1) the peaks of the axial and radial stresses and strain on the central axis and the radial line obey the power function distribution; at the same position, the axial and the radial stress peaks are close, and the axial strain peak is from much larger than the radial strain peak to close to. (2) The axial and radial stresses generate tensile stresses in the axial and radial propagation directions, respectively, and the coal mass is prone to damage under tensile stress. (3) When the speed is large, the axial stress–strain curve is similar to that of the dynamic load experiment. The axial stress peak, axial strain peak, critical effective stress, critical time and secant modulus have a linear relationship with the velocity. (4) When the dynamic load is large, most of the energy is in the form of kinetic energy, and the total energy loss also increases.


2021 ◽  
Vol 13 (10) ◽  
pp. 5741
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Xiaoshan Lin ◽  
Muhammad Riaz Ahmad

The addition of macro-polypropylene fibres improves the stress-strain performance of natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the variability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain, toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is also examined.


2014 ◽  
Vol 217-218 ◽  
pp. 201-207
Author(s):  
Chun Fang Wang ◽  
Kai Kun Wang ◽  
Zhe Luo

Flexible thixo-extrusion, as an innovative near-net-shape forming method, has huge advantages in processing the components with complex geometry. However, it should keep in mind that conventional liquid casting still represents the dominant mean of aluminum alloys production. One of the obstacles the thixo-extrusion has to overcome is lack of proof that can live up to the claim that thixo-extruded components have better mechanical properties. The main aim of this paper is to simulate the flexible thixo-extrusion process of aluminum alloy A356 and investigate the control method of materials flow front. An isothermal compression test of aluminum alloy A356 is first conducted to obtain the true stress-strain curves at different temperatures and strain rates. A constitutive equation describing the relationship of stress, strain, strain rate and temperature is fitted by Origin and then imported to the DEFORM-3D simulation software. The results show that the quality of final component is enormously influenced by the radius of the arcs and the flexible thixo-extruded components has less defects compared with the conventional extruded ones.


2021 ◽  
Vol 87 (5) ◽  
pp. 47-55
Author(s):  
A. O. Polovyi ◽  
N. V. Matiushevski ◽  
N. G. Lisachenko

A comparative analysis of typical stress-strain diagrams obtained for in-plain shear of the 25 unidirectional and cross-ply reinforced polymer matrix composites under quasi-static loading was carried out. Three of them were tested in the framework of this study, and the experimental data on other materials were taken from the literature. The analysis of the generalized shear-strength curves showed that most of the tested materials exhibit the similar deformation pattern depending on their initial shear modulus: a linear section is observed at the beginning of loading, whereas further increase of the load decreases the slope of the curve reaching the minimum in the failure point. For the three parameters (end point the linear part, maximum reduced deviation of the diagram, tangent shear modulus at the failure point) characterizing the individual features of the presented stress-strain diagrams, approximating their dependences on the value of the reduced initial shear modulus are obtained. At the characteristic points of the deformation diagrams, boundary conditions are determined that can be used to find the parameters of the approximating functions. A condition is proposed for determination of the end point of the linear section on the experimental stress-strain curve, according to which the maximum deviation between the experimental and calculated (according to Hooke’s law) values of the shear stress in this section is no more than 1%, thus ensuring rather high accuracy of approximation on the linear section of the diagram. The results of this study are recommended to use when developing universal and relatively simple in structure approximating functions that take into account the characteristic properties of the experimental curves of deformation of polymer composite materials under in-plane shear of the sheet. The minimum set of experimental data is required to determine the parameters of these functions.


Sign in / Sign up

Export Citation Format

Share Document