Impact and Moving Loads on a Slightly Curved Elastic Half Space

1959 ◽  
Vol 26 (4) ◽  
pp. 491-498
Author(s):  
A. C. Eringen ◽  
J. C. Samuels

Abstract Two-dimensional Fourier transforms are employed to treat the two-dimensional dynamic problem of elastic half space having a slightly wavy boundary. The various boundary curves considered include square and triangular bumps and holes, and sinusoidal and periodic boundaries. The number of different types of surface loadings considered are: (a) Normal tractions and zero shear, (b) impulsive normal tractions and zero shear, (c) suddenly applied normal tractions and zero shear, (d) concentrated normal load and zero shear, (e) concentrated impulsive load and zero shear, (f) pulsating normal load and zero shear, (g) moving loads, (h) pulsating moving loads, (i) vertical and horizontal loads, (j) moving vertical loads. Stress and displacement components for special cases of the loads described in (a, c, f, and g) acting on a sinusoidal boundary lead to a solution which requires evaluation of a single indefinite integral. Closed-form results are given for a uniform pulsating pressure load.

2012 ◽  
Vol 518-523 ◽  
pp. 3874-3877
Author(s):  
Tao Qian ◽  
Xiao Ping Shui ◽  
Yong Fa Zhang ◽  
Yong Gang Guo ◽  
Meng Ma

A rule of response of an infinite viscous-elastic half-space stimulated by the moving loads of different speeds is outlined in this paper. In order to obtain a three-dimensional analytical solution of the Viscous-elastic half-space with the moving loads of different speeds, the Laplace transform and relative coordinate transformation in cylindrical coordinates are used. Then, the IFFT and relative coordinate transformation are used to solve two-dimensional infinite integration which can greatly improve the operational efficiency. The rules of responses of different velocities from the results by using the principle of dynamics and energy dissipation are also analyzed and induced in this paper, and obtain the incentives of displacement distortion by the super-Rayleigh wave velocity at surface. The results could be referred in improving the practical security in the project.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Fan Jin ◽  
Xu Guo ◽  
Wei Zhang

In the present paper, axisymmetric frictionless adhesive contact between a rigid punch and a power-law graded elastic half-space is analytically investigated with use of Betti's reciprocity theorem and the generalized Abel transformation, a set of general closed-form solutions are derived to the Hertzian contact and Johnson–Kendall–Roberts (JKR)-type adhesive contact problems for an arbitrary punch profile within a circular contact region. These solutions provide analytical expressions of the surface stress, deformation fields, and equilibrium relations among the applied load, indentation depth, and contact radius. Based on these results, we then examine the combined effects of material inhomogeneities and punch surface morphologies on the adhesion behaviors of the considered contact system. The analytical results obtained in this paper include the corresponding solutions for homogeneous isotropic materials and the Gibson soil as special cases and, therefore, can also serve as the benchmarks for checking the validity of the numerical solution methods.


1996 ◽  
Vol 63 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J. R. Barber

Closed-form expressions are obtained for the normal surface displacements due to a normal point force moving at constant speed over the surface of an elastic half-space. The Smirnov-Sobolev technique is used to reduce the problem to a linear superposition of two-dimensional stress and displacement fields.


This paper is concerned with the study of transient response of a transversely isotropic elastic half-space under internal loadings and displacement discontinuities. Governing equations corresponding to two-dimensional and three-dimensional transient wave propagation problems are solved by using Laplace–Fourier integral transforms and Laplace−Hankel integral transforms, respectively. Explicit general solutions for displacements and stresses are presented. Thereafter boundary-value problems corresponding to internal transient loadings and transient displacement discontinuities are solved for both two-dimensional and three-dimensional problems. Explicit analytical solutions for displacements and stresses corresponding to internal loadings and displacement discontinuities are presented. Solutions corresponding to arbitrary loadings and displacement discontinuities can be obtained through the application of standard analytical procedures such as integration and Fourier expansion to the fundamental solutions presented in this article. It is shown that the transient response of a medium can be accurately computed by using a combination of numerical quadrature and a numerical Laplace inversion technique for the evaluation of integrals appearing in the analytical solutions. Comparisons with existing transient solutions for isotropic materials are presented to confirm the accuracy of the present solutions. Selected numerical results for displacements and stresses due to a buried circular patch load are presented to portray some features of the response of a transversely isotropic elastic half-space. The fundamental solutions presented in this paper can be used in the analysis of a variety of transient problems encountered in disciplines such as seismology, earthquake engineering, etc. In addition these fundamental solutions appear as the kernel functions in the boundary integral equation method and in the displacement discontinuity method.


Sign in / Sign up

Export Citation Format

Share Document