Interface Cracks in Kirchhoff Anisotropic Thin Plates of Dissimilar Materials

2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Xu Wang ◽  
Peter Schiavone

This paper investigates the problem of stretching and bending deformations of a Kirchhoff anisotropic thin plate composed of two dissimilar materials bonded along a straight interface containing a crack. Our analysis makes use of the Stroh octet formalism developed recently by Cheng and Reddy (Cheng and Reddy, 2002, “Octet Formalism for Kirchhoff Anisotropic Plates,” Proc. R. Soc. Lond., A458, pp. 1499–1517; Cheng and Reddy, 2003, “Green’s Functions for Infinite and Semi-Infinite Anisotropic Thin Plates,” ASME J. Appl. Mech., 70, pp. 260–267; Cheng and Reddy, 2004, “Laminated Anisotropic Thin Plate With an Elliptic Inhomogeneity,” Mech. Mater., 36, pp. 647–657; Cheng and Reddy, 2005, “Structure and Properties of the Fundamental Elastic Plate Matrix,” J. Appl. Math. Mech., 85, pp. 721–739) for Kirchhoff anisotropic plates. It is found that the interfacial crack-tip field consists of a pair of two-dimensional oscillatory singularities, which are explicitly determined. Two complex intensity factors are proposed to evaluate the two oscillatory singularities.

2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094464
Author(s):  
Sara Ould Hamouda ◽  
Nabil Kazi Tani ◽  
Tawfik Tamine

The aim of this present study is to analyze numerically the buckling behavior of cracked thin bi-material structures subjected to compression and tensile stresses and this, by considering the evolution of crack lengths and its orientations at the interface. This research work allows to quantify numerically the buckling phenomenon which can affects the thin plates for both cases, with and without interface crack especially, when the plate is subjected to tensile loading. The main important results of numerical simulations show that for the case of compression loading, the presence of interfacial crack increases significantly the strength of the thin plate against buckling phenomena. In the other hand, thin crack plates buckling is more pronounced when the crack tip is close to the interface (θ = 90°, θ = 75°). Finally, unlike to the case of homogeneous thin plates, the incorporation of bi-material aspect in thin plates design offers more strength against buckling either for compression or tensile loading.


1994 ◽  
Vol 49 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Robb Thomson ◽  
S. J. Zhou

2014 ◽  
Vol 1015 ◽  
pp. 97-100
Author(s):  
Yao Dai ◽  
Xiao Chong ◽  
Ying Chen

The higher order crack-tip fields for an anti-plane crack situated in the interface between functionally graded piezoelectric materials (FGPMs) and homogeneous piezoelectric materials (HPMs) are presented. The mechanical and electrical properties of the FGPMs are assumed to be linear functions of y perpendicular to the crack. The crack surfaces are supposed to be insulated electrically. By using the method of eigen-expansion, the higher order stress and electric displacement crack tip fields for FGPMs and HPMs are obtained. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived.


Author(s):  
Cheng Zhang ◽  
Jian-run Zhang ◽  
Xi Lu

The weak dynamic stiffness of thin plate is one of the important factors that limit the use of thin plate. Improving the dynamic stiffness of thin plate is one of the effective methods for the vibration control of thin plate. In this paper, the influence of pre-stress on the vibration characteristics of thin plate is studied. A vibration control method of thin plate based on pre-stress is proposed. The vibration differential equation of quadrate thin plate under pre-stressing is established. Using the Galerkin principle, the natural frequencies corresponding to the shape functions of the quadrate thin plates under pre-stressing in different distribution forms are obtained. By comparison, it is found that pre-stressing on the thin plate can change the dynamic stiffness of thin plate. In particular, tensile stress can increase the dynamic stiffness of thin plate while compressive stress can reduce the dynamic stiffness of the thin plate. The greater the pre-stress, the more obvious the effect. In the end, the requirements of the pre-stress distribution which can improve the dynamic stiffness of thin plate effectively are derived.


2014 ◽  
Vol 1042 ◽  
pp. 188-193 ◽  
Author(s):  
Xing Jun Hu ◽  
Jing Chang

In order to analyze the impact of engine cabin parts on aerodynamic characteristics, the related parts are divided into three categories except the engine cooling components: front thin plates (average thickness of 2mm), bottom-suspension and interior panels. The aerodynamic drag coefficient (Cd) were obtained upon the combination schemes consisting of the three types of parts by numerical simulation. Results show that Cd by simulation is closer to the test value gained by the wind tunnel experiment when front thin plates were simplified to the two-dimensional interface with zero thickness. The error is only 5.23%. Meanwhile this scheme reduces grid numbers, thus decreasing the calculating time. As the front thin plates can guide the flow, there is no difference on the Cd values gained from the model with or without bottom-suspension or interior panels when the engine cabin contains the front thin plates; while only both bottom-suspension and interior panels are removed, the Cd value can be reduced when the cabin doesn’t contain the front thin plates.


Sign in / Sign up

Export Citation Format

Share Document