Behavior and Quality Evaluation of Electroplastic Self-Piercing Riveting of Aluminum Alloy and Advanced High Strength Steel

Author(s):  
Ming Lou ◽  
YongBing Li ◽  
YaTing Li ◽  
GuanLong Chen

The hybrid use of dissimilar lightweight materials, such as aluminum alloy and advanced high strength steel (AHSS), has become a critical approach to reduce the weight of ground transportation vehicles. Self-piercing riveting (SPR) as a preferred cold-forming fastening method is facing problems like weak interlocking and insufficient penetration, due to the reduced formability of AHSS. In this paper, a new process named electroplastic self-piercing riveting (EP-SPR) was proposed to reduce the deformation resistance of AHSS DP780, by applying a direct current (dc) to it during the riveting process. The influence of dc on force and displacement characteristics throughout the riveting process, joint physical attributes and quasi-static performances for two sheet combinations, e.g., AA6061-T6 to DP780 (combination 1) and DP780 to AA6061-T6 (combination 2), were studied and compared with the traditional SPR joints. The results showed that compared with the traditional SPR joints, the EP-SPR ones increased by 12.5% and 23.3% in tensile-shear strength and cross-tension strengths for combination 1, respectively. For combination 2, even though the EP-SPR joints decreased by 5.8% in tensile-shear strength, it could reduce the penetration risk of bottom AA6061-T6, and present a better energy absorption capability for the increased undercut amount. In addition, the corresponding cross-tension strength of EP-SPR joints still increases by 6.1%.

Author(s):  
Abozar Barimani-Varandi ◽  
Abdolhossein Jalali Aghchai

The present work studied the enhancement of the tensile shear strength for joining AA6061-T6 aluminium to galvanized DP590 steel via electrically-assisted mechanical clinching (EAMC) using an integrated 2D FE model. To defeat the difficulties of joining low-ductility aluminium alloy to high-strength steel, the electroplastic effect obtained from the electrically-assisted process was applied to enhance the clinch-ability. For this purpose, the results of experiments performed by the chamfering punches with and without electrically-assisted pre-heating were compared. Joint cross-section, failure load, failure mode, fracture displacement, material flow, and failure mechanism were assessed in order to study the failure behaviour. The results showed that the joints clinched at the EAMC condition failed with the dominant dimpled mechanism observed on the fracture surface of AA6061 side, achieved from the athermal effect of the electroplasticity. Besides, these joints were strengthened 32% with a much more fracture displacement around 20% compared with non-electrically-assisted pre-heating.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 685
Author(s):  
Xiaoqing Jiang ◽  
Shujun Chen ◽  
Jinlong Gong ◽  
Zhenyang Lu

The present study aims to investigate the effect of microstructure and texture on mechanical properties of resistance spot welding of high strength steel 22MnB5 and 5A06 aluminium alloy as a function of welding parameters. The pseudo-nugget zones (NZs) at the steel side have undergone full recrystallisation with a fine-grained ferrite structure containing a small amount of retained austenite and a high hardness of approximately 500 HV, which is a 35% increase in hardness compared to the base material (BM) with fine lath martensitic structure. The NZs at the Al side contain both a recrystallisation texture and shear texture. Higher tensile shear strength with increasing weld time could be linked to the random texture at the Al side. The highest tensile shear strength was achieved at an intermetallic layer thickness of 4 mm.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Thongchai Arunchai ◽  
Kawin Sonthipermpoon ◽  
Phisut Apichayakul ◽  
Kreangsak Tamee

Resistance Spot Welding (RSW) is processed by using aluminum alloy used in the automotive industry. The difficulty of RSW parameter setting leads to inconsistent quality between welds. The important RSW parameters are the welding current, electrode force, and welding time. An additional RSW parameter, that is, the electrical resistance of the aluminum alloy, which varies depending on the thickness of the material, is considered to be a necessary parameter. The parameters applied to the RSW process, with aluminum alloy, are sensitive to exact measurement. Parameter prediction by the use of an artificial neural network (ANN) as a tool in finding the parameter optimization was investigated. The ANN was designed and tested for predictive weld quality by using the input and output data in parameters and tensile shear strength of the aluminum alloy, respectively. The results of the tensile shear strength testing and the estimated parameter optimization are applied to the RSW process. The achieved results of the tensile shear strength output were mean squared error (MSE) and accuracy equal to 0.054 and 95%, respectively. This indicates that that the application of the ANN in welding machine control is highly successful in setting the welding parameters.


2015 ◽  
Vol 819 ◽  
pp. 45-49 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Mohd Zahir Abd Latif ◽  
Mohd Noor Mazlee ◽  
Kamarudin Hussin

The effect of welding current on the joining of mild steel and aluminum 6063 has been investigated. The joining was carried using a tungsten inert gas (TIG) welding. The welding currents used were 30 A to 80 A. The formation of intermetallic reaction layers (IML) and tensile shear strength of the joining were investigated. The result showed that tensile shear strength increased as welding current increased up to 55 A. Microstructural analysis showed that intermetallic reaction layer was formed at the interface between steel and aluminum alloy during welding process. The thickness of IML was decreased with decreasing welding current.


Sign in / Sign up

Export Citation Format

Share Document