Fault Diagnosis of a Sensor Network: A Distributed Filtering Approach

Author(s):  
Rajamani Doraiswami ◽  
Lahouari Cheded

This paper proposes a model-based approach to develop a novel fault diagnosis scheme for a sensor network of a cascade, parallel and feedback combination of subsystems. The objective is to detect and isolate a fault in any of the subsystems and measurement sensors which are subject to disturbances and/or measurement noise. Our approach hinges on the use of a bank of Kalman filters (KF) to detect and isolate faults. Each KF is driven by either a pair (a) of consecutive sensor measurements or (b) of a reference input and a measurement. It is shown that the KF residual is a reliable indicator of a fault in subsystems and sensors located in the path between the pair of the KF's input. The simple and efficient procedure proposed here analyzes each of the associated paths and leads to both the detection and isolation of any fault that occurred in the paths analyzed. The scheme is successfully evaluated on several simulated examples and on a physical fluid system exemplified by a benchmarked laboratory-scale two-tank system to detect and isolate faults including sensor, actuator and leakage ones.

Author(s):  
Changshuo Wang ◽  
Jiwei Wen ◽  
Xiaoli Luan

Generally, distributed H∞ filtering approach achieves a certain disturbance attenuation level in the full frequency range. However, the energy of system noise or reference input usually limits in a specified frequency range. To reduce such a design conservatism, this article develops a distributed filtering approach based on dual scale, that is, filtering over a finite-time interval from time scale and also on a specified finite-frequency region from the frequency scale. Our target is to make the filtering error under sensor networks monitoring be relaxed into an ellipsoid bound rather than asymptotically converging to zero for exogenous noise in a specified frequency range. Finally, two illustrative examples demonstrate the strength of the developed filtering approach.


2013 ◽  
Vol 846-847 ◽  
pp. 442-445
Author(s):  
Chun Lin He

The fault diagnosis technology have emerged and developed rapidly with the development of wireless sensor networks and requirements of applications improve. This paper describes two commonly used sensor network fault modeling. What is more, in order to solve this problem that sensor nodes are vulnerable and therefore produce wrong data, the paper proposes a distributed fault detecting algorithm based on spatio-temporal correlation among data of adjacent nodes. The simulation experiment shows that the algorithm can efficiently detect errors in the network and very few errors are introduced.


2012 ◽  
Vol 433-440 ◽  
pp. 5573-5578
Author(s):  
Tie Liu Wang ◽  
Si Lei Shen ◽  
Jun Jie Wang

Wireless Sensor Network (WSN) is used for such tasks as surveillance, widespread environmental sampling, security, and health monitoring widely. In this paper, a WSNs topology is proposed for lightning monitoring of distribution lines, which decides the number of nodes, routing protocol and power efficiency. The WSNs is deployed along the distribution line with nodes mounted on tall towers, which is used to monitor the lightning activities and accomplish fault diagnosis. At last, a monitoring system based on WSN is fabricated.


Sign in / Sign up

Export Citation Format

Share Document