Magnetic Resonance Imaging Assessment of Mechanical Interactions Between Human Lower Leg Muscles in Vivo

2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Alper Yaman ◽  
Cengizhan Ozturk ◽  
Peter A. Huijing ◽  
Can A. Yucesoy

Evidence on epimuscular myofascial force transmission (EMFT) was shown for undissected muscle in situ. We hypothesize that global length changes of gastrocnemius muscle-tendon complex in vivo will cause sizable and heterogeneous local strains within all muscles of the human lower leg. Our goal is to test this hypothesis. A method was developed and validated using high-resolution 3D magnetic resonance image sets and Demons nonrigid registration algorithm for performing large deformation analyses. Calculation of strain tensors per voxel in human muscles in vivo allowed quantifying local heterogeneous tissue deformations and volume changes. After hip and knee movement (Δ knee angle ≈ 25 deg) but without any ankle movement, local lengthening within m. gastrocnemius was shown to occur simultaneously with local shortening (maximally by +34.2% and −32.6%, respectively) at different locations. Moreover, similar local strains occur also within other muscles, despite being kept at constant muscle-tendon complex length. This is shown for synergistic m. soleus and deep flexors, as well as for antagonistic anterior crural and peroneal muscle groups: minimum peak lengthening and shortening equaled 23.3% and 25.54%, respectively despite global isometric conditions. These findings confirm our hypothesis and show that in vivo, muscles are in principle not independent mechanically.

2008 ◽  
Vol 104 (6) ◽  
pp. 1557-1567 ◽  
Author(s):  
Huub Maas ◽  
Thomas G. Sandercock

It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70–140°). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80°-90°). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation ( P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 ± 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 ± 0.6 vs. 1.0 ± 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.


2002 ◽  
Vol 02 (03n04) ◽  
pp. 405-419 ◽  
Author(s):  
PETER A. HUIJING

The concepts of intramuscular myofascial force transmission is reintroduced and reviewed on the basis of experiments involving tenotomy and aponeurotomy of dissected rat EDL muscle studied in situ. Results from experiments with measurements of force of EDL muscle, of which the muscle belly was not dissected (i.e. the muscle is surrounded by its natural connective tissue milieu) are discussed. In such experiments, force was measured at proximal as well as distal EDL tendons. Examples of experimental evidence for both extramuscular and intermuscular myofascial force transmission within the rat anterior crural compartment are presented. Evidence is presented also for differential effects of proximal and distal lengthening on myofascial force transmission from EDL, even for the case in which symmetric length changes were imposed on the muscle. It is shown that myofascial force transmission effects are not limited to synergists located within one compartment, but do also play a very substantial role in the interaction between antagonist muscles in neighbouring anterior crural and peroneal compartments.


2003 ◽  
Vol 03 (02) ◽  
pp. 145-168 ◽  
Author(s):  
Huub Maas ◽  
Can A. Yucesoy ◽  
Guus C. Baan ◽  
Peter A. Huijing

Force is transmitted from muscle fiber to bone via several pathways: (1) via the tendons (i.e. myotendinous force transmission), (2) via intermuscular connective tissue to adjacent muscles (i.e. intermuscular myofascial force transmission), (3) via structures other than muscles (i.e. extramuscular myofascial force transmission). In vivo, the position of a muscle relative to adjacent muscles changes due to differences in moment arm between synergists as well as due to the fact that some muscles span only one joint and other muscles more than one joint. The position of a muscle relative to non-muscular structures within a compartment is altered with each change of the length of the muscle. The aim of this article is to describe recent experimental results, as well as some new experimental data, that have elucidated the role of muscle relative position on force transmission from muscle. Furthermore, relevant literature is discussed, taking into consideration these new insights of muscle functioning. It is concluded that the position of a muscle relative to surrounding tissues is a major co-determinant of isometric muscle force. For muscles operating within their in vivo context of connective tissue, such position effects should be taken into account.


2017 ◽  
Vol 63 ◽  
pp. 55-60 ◽  
Author(s):  
Hellen Veloso Rocha Marinho ◽  
Giovanna Mendes Amaral ◽  
Bruno Souza Moreira ◽  
Thiago Ribeiro Teles Santos ◽  
Fabrício Anicio Magalhães ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 234-244 ◽  
Author(s):  
Jan Wilke ◽  
Robert Schleip ◽  
Can A. Yucesoy ◽  
Winfried Banzer

Recent research indicates that fascia is capable of changing its biomechanical properties. Moreover, as it links the skeletal muscles, forming a body-wide network of multidirectional myofascial continuity, the classical conception of muscles as independent actuators has been challenged. Hence, the present synthesis review aims to characterize the mechanical relevance of the connective tissue for the locomotor system. Results of cadaveric and animal studies suggest a clinically relevant myofascial force transmission to neighboring structures within one limb (e.g., between synergists) and in the course of muscle-fascia chains (e.g., between leg and trunk). Initial in vivo trials appear to underpin these findings, demonstrating the existence of nonlocal exercise effects. However, the factors influencing the amount of transmitted force (e.g., age and physical activity) remain controversial, as well as the role of the central nervous system within the context of the observed remote exercise effects.


2003 ◽  
Vol 95 (5) ◽  
pp. 2004-2013 ◽  
Author(s):  
Huub Maas ◽  
Richard T. Jaspers ◽  
Guus C. Baan ◽  
Peter A. Huijing

Force transmission from muscle fibers via the connective tissue network (i.e., myofascial force transmission) is an important determinant of muscle function. This study investigates the role of myofascial pathways for force transmission from multitendoned extensor digitorum longus (EDL) muscle within an intact anterior crural compartment. Effects of length changes exclusively of head III of rat EDL muscle (EDL III) on myofascial force transmission were assessed. EDL III was lengthened at the distal tendon. For different lengths of EDL III, isometric forces were measured at the distal tendon of EDL III, as well as at the proximal tendon of whole EDL and at the distal tendons of tibialis anterior and extensor hallucis longus (TA+EHL) muscles. Lengthening of EDL III caused high changes in force exerted at the distal tendon of EDL III (from 0 to 1.03 ± 0.07 N). In contrast, only minor changes were found in force exerted at the proximal EDL tendon (from 2.37 ± 0.09 to 2.53 ± 0.10 N). Increasing the length of EDL III decreased TA+EHL force significantly (by 7%, i.e., from 5.62 ± 0.27 to 5.22 ± 0.32 N). These results show that force is transmitted between EDL III and adjacent tissues via myofascial pathways. Optimal force exerted at the distal tendon of EDL III (1.03 ± 0.07 N) was more than twice the force expected on the basis of the physiological cross-sectional area of EDL III muscle fibers (0.42 N). Therefore, a substantial fraction of this force must originate from sources other than EDL III. It is concluded that myofascial pathways play an important role in force transmission from multitendoned muscles.


Author(s):  
M.S. Ajimsha ◽  
Praveen Surendran ◽  
Prasobh Jacob ◽  
Pramod Shenoy ◽  
Mohammed Bilal

Background: The fascial system provides an environment that enables all body systems to operate in an integrated manner and is capable of modifying its tensional state in response to the stress applied to it. Recent in vitro, animal and cadaveric studies have shown that “myofascial force transfer” (MFT) has the potential to play a major role in musculoskeletal function and dysfunction.Objective: Human evidence for the existence of invivo MFT is scarce. This scoping review attempts to gather and analyse the available evidence of the in-vivo human MFT studies in order to sustain and facilitate further research and evidence based practice in this field.Methods: A search of most major databases was conducted with relevant keywords that yielded 238 articles as of August 2020. A qualitative analysis of the studies was conducted after rating it with Oxford’s Center for Evidence –based Medicine (CEBM) scale.Result: Nineteen studies ranging from randomized controlled trials to case studies covering 540 patients were included in this review. The analysed studies were highly heterogeneous and of lower methodological quality meddling with the quantitative analysis. Ten studies are confirming a ‘most likely’ existence of MFT, eight studies confirming it as ‘likely’ and one study couldn’t confirm any MFT existence in this review.Conclusion: Findings from in vivo human studies supports the animal and cadaveric studies claiming the existence of MFT which need to be corroborated by the future high quality studies. Forthcoming studies on MFT may give answers and solutions to many of the human musculoskeletal mysteries or dysfunctions.


2009 ◽  
Vol 41 ◽  
pp. 196
Author(s):  
Jens Bojsen-Moller ◽  
Sidse Schwartz ◽  
Taija Finni ◽  
Kari Kalliokoski ◽  
S Peter Magnusson

Sign in / Sign up

Export Citation Format

Share Document