Flow Over a Stretching Sheet in a Dusty Fluid With Radiation Effect

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
G. K. Ramesh ◽  
B. J. Gireesha

The radiation effect on a steady two-dimensional boundary layer flow of a dusty fluid over a stretching sheet is analyzed. The governing nonlinear partial differential equations have been transformed by a similarity transformation into a system of nonlinear ordinary differential equations and then solved numerically by applying Runge Kutta Fehlberg fourth-fifth order method (RKF45 method). The effect of fluid particle interaction parameter, Prandtl number, Eckert number, and radiation parameter on heat transfer characteristics in two different general cases, namely (1) the prescribed surface temperature (PST) and (2) the prescribed heat flux (PHF) are presented graphically and discussed. The rate of heat transfer is computed and tabulated for various values of the different parameters. Comparison of the obtained numerical results is made with previously published results.

2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2019 ◽  
Vol 35 (5) ◽  
pp. 705-717
Author(s):  
S. Ghosh ◽  
S. Mukhopadhyay ◽  
K. Vajravelu

ABSTRACTThe problem of unsteady boundary layer flow of a nanofluid over a stretching surface is studied. Heat transfer due to melting is analyzed. Using a similarity transformation the governing coupled nonlinear partial differential equations of the model are reduced to a system of nonlinear ordinary differential equations, and then solved numerically by a Runge-Kutta method with a shooting technique. Dual solutions are observed numerically and their characteristics are analyzed. The effects of the pertinent parameters such as the acceleration parameter, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number and the Lewis number on the velocity, temperature and concentration fields are discussed. Also the effects of these parameters on the skin friction coefficient, the Nusselt number and the Sherwood number are analyzed through graphs. It is observed that the melting phenomenon has a significant effect on the flow, heat and mass transfer characteristics.


2008 ◽  
Vol 86 (6) ◽  
pp. 853-855 ◽  
Author(s):  
A Ishak ◽  
R Nazar ◽  
I Pop

The unsteady laminar boundary-layer flow over a continuously stretching surface in a viscous and incompressible quiescent fluid is studied. The unsteadiness in the flow and temperature fields is caused by the time dependence of the stretching velocity and the surface heat flux. The nonlinear partial differential equations of continuity, momentum, and energy, with three independent variables, are reduced to nonlinear ordinary differential equations, before they are solved numerically by the Keller-box method. Comparison with available data from the open literature as well as the exact solution for the steady-state case of the present problem is made, and found to be in good agreement. Effects of the unsteadiness parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined.PACS No.: 47.15.Cb


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Raj Nandkeolyar ◽  
Precious Sibanda

The steady two-dimensional boundary layer flow of a viscous, incompressible, and electrically conducting dusty fluid past a vertical permeable stretching sheet under the influence of a transverse magnetic field with the viscous and Joule dissipation is investigated. The fluid particles are assumed to be heat absorbing and the temperature at the surface of the sheet is a result of convective heating. The governing nonlinear partial differential equations are transformed to a set of highly nonlinear coupled ordinary differential equations using a suitable similarity transformation and the resulting system is then solved numerically. It is found inter alia that the contributions of viscous and Joule dissipation in the flow are to increase the thickness of the thermal boundary layer.


Author(s):  
Noorzehan Fazahiyah Md Shab ◽  
Anati Ali

This paper investigated the problem of hydromagnetic boundary layer flow and heat transfer of a dusty fluid over a stretching sheet through a porous medium. The velocity slip was considered instead of the no-slip condition at the boundary. The governing partial equations were reduced into a set of non-linear ordinary differential equations by using the suitable similarity transformation. The transformed equations were numerically integrated using bvp4c in Matlab. The effects of various physical parameters on the velocity and temperature profiles of both phases, such as fluid-particle interaction parameter, magnetic parameter, mass concentration parameter, porosity parameter and Prandtl number were obtained and analyzed through several plots. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, the obtained numerical results were compared and found to be in good agreement with previously published results.


2016 ◽  
Vol 20 (6) ◽  
pp. 1835-1845 ◽  
Author(s):  
Tasawar Hayat ◽  
Maria Imtiaz ◽  
Ahmed Alsaedi

Analysis has been carried out for the magnetohydrodynamic (MHD) boundary layer flow of nanofluid. The flow is caused by a permeable stretching sheet. Convective type boundary conditions are employed in modeling the heat and mass transfer process. Appropriate transformations reduce the nonlinear partial differential equations to ordinary differential equations. The convergent series solutions are constructed. Graphical results of different parameters are discussed. The behaviors of Brownian motion and thermophoretic diffusion of nanoparticles have been examined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been evaluated and discussed.


2020 ◽  
Vol 11 ◽  
pp. 1303-1315
Author(s):  
Ganji Narender ◽  
Kamatam Govardhan ◽  
Gobburu Sreedhar Sarma

This article proposes a numerical model to investigate the impact of the radiation effects in the presence of heat generation/absorption and magnetic field on the magnetohydrodynamics (MHD) stagnation point flow over a radially stretching sheet using a Casson nanofluid. The nonlinear partial differential equations (PDEs) describing the proposed flow problem are reduced to a set of ordinary differential equations (ODEs) via suitable similarity transformations. The shooting technique and the Adams–Moulton method of fourth order are used to obtain the numerical results via the computational program language FORTRAN. Nanoparticles have unique thermal and electrical properties which can improve heat transfer in nanofluids. The effects of pertinent flow parameters on the nondimensional velocity, temperature and concentration profiles are presented. Overall, the results show that the heat transfer rate increases for higher values of the radiation parameter in a Casson nanofluid.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
R. C. Aziz ◽  
I. Hashim ◽  
S. Abbasbandy

This paper examines the effects of thermocapillarity and thermal radiation on the boundary layer flow and heat transfer in a thin film on an unsteady stretching sheet with nonuniform heat source/sink. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation and then are solved by using the homotopy analysis method (HAM). The effects of the radiation parameter, the thermocapillarity number, and the temperature-dependent parameter in this study are discussed and presented graphically via velocity and temperature profiles.


2016 ◽  
Vol 12 (7) ◽  
pp. 6412-6421
Author(s):  
Ajala O.A ◽  
Aseelebe L. O ◽  
Ogunwobi Z. O

A steady two dimensional boundary layer flow and heat transfer with variable viscosity electrically conducting fluid at T in the presence of magnetic fields and thermal radiation was considered. The governing equations which are partial differential equations were transformed into ordinary differential equations using similarity variables, and the resulting coupled ordinary differential equations were solved using collocation method in MAPLE 18. The velocity and temperature profiles were studied graphically for different physical parameters. The effects of the parameters on velocity and temperature profile were showed.


Sign in / Sign up

Export Citation Format

Share Document