Nonlinear Parametric Resonance of a Fractional Damped Axially Moving String

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Tian-Zhi Yang ◽  
Xiaodong Yang ◽  
Fei Chen ◽  
Bo Fang

Nonlinear parametric vibration of an axially accelerating viscoelastic string is investigated. The string is constituted by the fractional Kelvin model. The principal parametric resonance is analyzed by using an asymptotic approach. The modulation equation is derived from the solvability condition. Closed-form expressions of the amplitudes and the existence conditions of steady-state responses are obtained from the modulation equation. Numerical examples are presented to highlight the effects of fractional order and other system parameters on the responses.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Li ◽  
Ye Tang

The nonlinear parametric vibration of an axially moving string made by rubber-like materials is studied in the paper. The fractional viscoelastic model is used to describe the damping of the string. Then, a new nonlinear fractional mathematical model governing transverse motion of the string is derived based on Newton’s second law, the Euler beam theory, and the Lagrangian strain. Taking into consideration the fractional calculus law of Riemann-Liouville form, the principal parametric resonance is analytically investigated via applying the direct multiscale method. Numerical results are presented to show the influences of the fractional order, the stiffness constant, the viscosity coefficient, and the axial-speed fluctuation amplitude on steady-state responses. It is noticeable that the amplitudes and existing intervals of steady-state responses predicted by Kirchhoff’s fractional material model are much larger than those predicted by Mote’s fractional material model.


1970 ◽  
Vol 37 (4) ◽  
pp. 1061-1068 ◽  
Author(s):  
W. K. Tso ◽  
K. G. Asmis

The steady-state responses of a simple pendulum with a hinge exhibiting bilinear hysteretic moment-rotation characteristics and parametrically excited by a sinusoidal oscillation at the base is given. The stability of the steady-state solutions is discussed. It is shown that in contrast with viscous damping, the bilinear hysteresis is an effective mechanism to limit the growth of the response during parametric resonance.


2002 ◽  
Vol 13 (04) ◽  
pp. 205-224 ◽  
Author(s):  
Andrew Dimitrijevic ◽  
Sasha M. John ◽  
Patricia Van Roon ◽  
David W. Purcell ◽  
Julija Adamonis ◽  
...  

Multiple auditory steady-state responses were evoked by eight tonal stimuli (four per ear), with each stimulus simultaneously modulated in both amplitude and frequency. The modulation frequencies varied from 80 to 95 Hz and the carrier frequencies were 500, 1000, 2000, and 4000 Hz. For air conduction, the differences between physiologic thresholds for these mixed-modulation (MM) stimuli and behavioral thresholds for pure tones in 31 adult subjects with a sensorineural hearing impairment and 14 adult subjects with normal hearing were 14 ± 11, 5 ± 9, 5 ± 9, and 9 ± 10 dB (correlation coefficients .85, .94, .95, and .95) for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. Similar results were obtained in subjects with simulated conductive hearing losses. Responses to stimuli presented through a forehead bone conductor showed physiologic-behavioral threshold differences of 22 ± 8, 14 ± 5, 5 ± 8, and 5 ± 10 dB for the 500-, 1000-, 2000-, and 4000-Hz carrier frequencies, respectively. These responses were attenuated by white noise presented concurrently through the bone conductor.


2001 ◽  
Vol 112 (3) ◽  
pp. 555-562 ◽  
Author(s):  
M.Sasha John ◽  
Andrew Dimitrijevic ◽  
Terence W Picton

Sign in / Sign up

Export Citation Format

Share Document