Leakage and Rotordynamic Coefficients of Brush Seals With Zero Cold Clearance Used in an Arrangement With Labyrinth Fins

Author(s):  
Manuel Gaszner ◽  
Alexander O. Pugachev ◽  
Christos Georgakis ◽  
Paul Cooper

A brush-labyrinth sealing configuration consisting of two labyrinth fins upstream and one brush seal downstream is studied experimentally and theoretically. Two slightly different brush seal designs with zero cold radial clearance are considered. The sealing configurations are tested on the no-whirl and dynamic test rigs to obtain leakage performance and rotordynamic stiffness and damping coefficients. The no-whirl tests allow identification of the local rotordynamic direct and cross-coupled stiffness coefficients for a wide range of operating conditions, while the dynamic test rig is used to obtain both global stiffness and damping coefficients but for a narrower operating range limited by the capabilities of a magnetic actuator. Modeling of the brush-labyrinth seals is performed using computational fluid dynamics. The experimental global rotordynamic coefficients consist of an aerodynamic component due to the gas flow and a mechanical component due to the contact between the bristle tips and rotor surface. The computational fluid dynamics (CFD)–based calculations of rotordynamic coefficients provide, however, only the aerodynamic component. A simple mechanical model is used to estimate the theoretical value of the mechanical stiffness of the bristle pack during the contact. The results obtained for the sealing configurations with zero cold radial clearance brush seals are compared with available data on three-tooth-on-stator labyrinth seals and a brush seal with positive cold radial clearance. Results show that the sealing arrangement with a line-on-line welded brush seal has the best performance overall with the lowest leakage and cross-coupled stiffness. The predictions are generally in agreement with the measurements for leakage and stiffness coefficients. The seal-damping capability is noticeably underpredicted.

Author(s):  
Manuel Gaszner ◽  
Alexander O. Pugachev ◽  
Christos Georgakis ◽  
Paul Cooper

A brush-labyrinth sealing configuration consisting of two labyrinth fins upstream and one brush seal downstream is studied experimentally and theoretically. Two slightly different brush seal designs with zero cold radial clearance are considered. The sealing configurations are tested on the no-whirl and dynamic test rigs to obtain leakage performance and rotordynamic stiffness and damping coefficients. The no-whirl tests allow identification of the local rotordynamic direct and cross-coupled stiffness coefficients for a wide range of operating conditions, while the dynamic test rig is used to obtain both global stiffness and damping coefficients, but for a narrower operating range limited by the capabilities of a magnetic actuator. Modeling of the brush-labyrinth seals is performed using computational fluid dynamics. The experimental global rotordynamic coefficients consist of an aerodynamic component due to the gas flow and a mechanical component due to the contact between the bristle tips and rotor surface. The CFD-based calculations of rotordynamic coefficients provide however only the aerodynamic component. A simple mechanical model is used to estimate the theoretical value of the mechanical stiffness of the bristle pack during the contact. The results obtained for the sealing configurations with zero cold radial clearance brush seals are compared with available data on three-tooth-on-stator labyrinth seals and a brush seal with positive cold radial clearance. Results show that the sealing arrangement with a line-on-line welded brush seal has the best performance overall with the lowest leakage and cross-coupled stiffness. The predictions are generally in agreement with the measurements for leakage and stiffness coefficients. The seal damping capability is noticeably underpredicted.


Author(s):  
Alexander O. Pugachev ◽  
Clemens Griebel ◽  
Stacie Tibos ◽  
Bernard Charnley

In this paper, a hybrid brush pocket damper seal is studied theoretically using computational fluid dynamics. In the hybrid sealing arrangement, the brush seal element with cold clearance is placed downstream of a 4-bladed, 8-pocket, fully partitioned pocket damper seal. The new seal geometry is derived based on designs of short brush-labyrinth seals studied in previous works. Transient CFD simulations coupled with the multi-frequency rotor excitation method are performed to determine frequency-dependent stiffness and damping coefficients of pocket damper seals. A moving mesh technique is applied to model the shaft motion on a predefined whirling orbit. The rotordynamic coefficients are calculated from impedances obtained in frequency domain. The pocket damper seal CFD model is validated against available experimental and numerical results found in the literature. Bristle pack in the brush seal CFD model is described as porous medium. The applied brush seal model is validated using the measurements obtained in previous works from two test rigs. Predicted leakage characteristics as well as stiffness and damping coefficients of the hybrid brush pocket damper seal are presented for different operating conditions. In this case, the rotordynamic coefficients are calculated using a single-frequency transient simulation. By adding the brush seal, direct stiffness is predicted to be significantly decreased while effective damping shows a more moderate or no reduction depending on excitation frequency. Effective clearance results indicate more than halved leakage compared to the case without brush seal.


Author(s):  
Alexander O. Pugachev ◽  
Ulrich Kleinhans ◽  
Manuel Gaszner

The analysis is presented for the computational fluid dynamics (CFD)-based modeling of short labyrinth gas seals. Seal leakage performance can be reliably predicted with CFD for a wide operating range and various sealing configurations. Prediction of seal influence on the rotordynamic stability, however, is a challenging task requiring relatively high computer processing power. A full 3D eccentric CFD model of a short staggered three-tooth-on-stator labyrinth seal is built in ANSYS CFX. An extensive grid independence study is carried out showing influence of the grid refinement on the stiffness coefficients. Three methods for the prediction of stiffness and damping coefficients as well as the effect of turbulence modeling, boundary conditions, and solver parameters are presented. The rest of the paper shows the results of a parameter variation (inlet pressure, preswirl, and shaft rotational speed) for two labyrinth seals with a tooth radial clearance of 0.5 mm and 0.27 mm, respectively. The latter was compared with experimental data in Pugachev and Deckner, 2010, “Analysis of the Experimental and CFD-Based Theoretical Methods for Studying Rotordynamic Characteristics of Labyrinth Gas Seals,” Proceedings of ASME Turbo Expo 2010, Paper No. GT2010-22058.


Author(s):  
Alexander O. Pugachev ◽  
Manuel Gaszner ◽  
Christos Georgakis ◽  
Paul Cooper

This paper studies the effect of brush seal segmentation on the seal performance characteristics. A brush-labyrinth sealing configuration arranged of one brush seal downstream and two labyrinth fins upstream is studied experimentally and theoretically. The studied brush seal is of welded design installed with zero cold radial clearance. The brush seal front and back rings as well as the bristle pack are segmented radially in a single plane using the electrical discharge machining technique. The segmentation procedure results in loss of bristles at the site of the cuts altering the leakage flow structure in the seal and its performance characteristics. Two test rigs are used to obtain leakage, as well as rotordynamic stiffness and damping coefficients of the seal at different pressure ratios. The CFD-based model is used to predict the seal performance and to study in detail local changes in the flow field due to the segmentation. A back-to-back comparison of the performance of non-segmented and segmented brush seals, as well as baseline labyrinth seal is provided. The obtained results demonstrate that the segmentation in general negatively affects the performance of the studied brush-labyrinth sealing configuration. However, the segmented brush seal shows increased direct damping coefficients.


Author(s):  
Alexander O. Pugachev ◽  
Martin Deckner

This paper presents ongoing investigations on calculation and measurement of rotordynamic coefficients for brush-labyrinth gas seals. The seals are tested on static and dynamic test rigs to measure leakage, pressure distribution, and seal specific forces. To predict seal performance a full three-dimensional eccentric CFD model is considered. Rotordynamic coefficients are calculated using the whirling rotor method. The bristle pack of the brush seal is modeled using the porous medium approach. The prediction results show some deviations in absolute values of stiffness and damping coefficients in comparison with the experimental values, but the trends are similar. Comparing with a staggered labyrinth seal, the brush seal improves rotordynamic characteristics in most cases. Position of the brush seal in sealing configuration has a great influence on the stiffness and damping coefficients, while leakage performance remains relatively unaffected. The capability of the brush seal model based on the porous medium approach to predict rotordynamic coefficients is discussed.


Author(s):  
Alexander O. Pugachev ◽  
Manuel Gaszner ◽  
Christos Georgakis ◽  
Paul Cooper

This paper studies the effect of brush seal segmentation on the seal performance characteristics. A brush–labyrinth sealing configuration arranged of one brush seal downstream and two labyrinth fins upstream is studied experimentally and theoretically. The studied brush seal is of welded design installed with zero cold radial clearance. The brush seal front and back rings as well as the bristle pack are segmented radially in a single plane using the electrical discharge machining (EDM) technique. The segmentation procedure results in loss of bristles at the site of the cuts altering the leakage flow structure in the seal and its performance characteristics. Two test rigs are used to obtain leakage, as well as rotordynamic stiffness and damping coefficients of the seal at different pressure ratios. The computational fluid dynamics (CFD)-based model is used to predict the seal performance and to study in detail local changes in the flow field due to the segmentation. A back-to-back comparison of the performance of nonsegmented and segmented brush seals as well as baseline labyrinth seal is provided. The obtained results demonstrate that the segmentation in general negatively affects the performance of the studied brush–labyrinth sealing configuration. However, the segmented brush seal shows increased direct damping coefficients.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Farzam Mortazavi ◽  
Alan Palazzolo

Circumferentially grooved, annular liquid seals typically exhibit good whirl frequency ratios (WFRs) and leakage reduction, yet their low effective damping can lead to instability. The current study investigates the rotordynamic behavior of a 15-step groove-on-rotor annular liquid seal by means of computational fluid dynamics (CFD), in contrast to the previous studies which focused on a groove-on-stator geometry. The seal dimensions and working conditions have been selected based on experiments of Moreland and Childs (2016, “Influence of Pre-Swirl and Eccentricity in Smooth Stator/Grooved Rotor Liquid Annular Seals, Measured Static and Rotordynamic Characteristics,” M.Sc. thesis, Texas A&M University, College Station, TX). The frequency ratios as high as four have been studied. Implementation of pressure-pressure inlet and outlet conditions make the need for loss coefficients at the entrance and exit of the seal redundant. A computationally efficient quasi-steady approach is used to obtain impedance curves as functions of the excitation frequency. The effectiveness of steady-state CFD approach is validated by comparison with the experimental results of Moreland and Childs. Results show good agreement in terms of leakage, preswirl ratio (PSR), and rotordynamic coefficients. It was found that PSR will be about 0.3–0.4 at the entrance of the seal in the case of radial injection, and outlet swirl ratio (OSR) always converges to values near 0.5 for current seal and operational conditions. The negative value of direct stiffness coefficients, large cross-coupled stiffness coefficients, and small direct damping coefficients explains the destabilizing nature of these seals. Finally, the influence of surface roughness on leakage, PSR, OSR, and stiffness coefficients is discussed.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Jongin Yang ◽  
Alan Palazzolo

Part II presents a novel approach for predicting dynamic coefficients for a tilting pad journal bearing (TPJB) using computational fluid dynamics (CFD) and finite element method (FEM), including fully coupled elastic deflection, heat transfer, and fluid dynamics. Part I presented a similarly novel, high fidelity approach for TPJB static response prediction which is a prerequisite for the dynamic characteristic determination. The static response establishes the equilibrium operating point values for eccentricity, attitude angle, deflections, temperatures, pressures, etc. The stiffness and damping coefficients are obtained by perturbing the pad and journal motions about this operating point to determine changes in forces and moments. The stiffness and damping coefficients are presented in “synchronously reduced form” as required by American Petroleum Institute (API) vibration standards. Similar to Part I, an advanced three-dimensional thermal—Reynolds equation code validates the CFD code for the special case when flow Between Pad (BP) regions is ignored, and the CFD and Reynolds pad boundary conditions are made identical. The results show excellent agreement for this validation case. Similar to the static response case, the dynamic characteristics from the Reynolds model show large discrepancies compared with the CFD results, depending on the Reynolds mixing coefficient (MC). The discrepancies are a concern given the key role that stiffness and damping coefficients serve instability and response predictions in rotordynamics software. The uncertainty of the MC and its significant influence on static and dynamic response predictions emphasizes a need to utilize the CFD approach for TPJB simulation in critical machines.


Author(s):  
Dara W. Childs ◽  
David A. Elrod ◽  
Keith Hale

Test results (leakage and rotordynamic coefficients) are presented for an interlock and tooth-on-stator labyrinth seals. Tests were carried out with air at speeds out to 16,000 cpm and supply pressures up to 7.5 bars. The rotordynamic coefficients consist of direct and cross-coupled stiffness and damping coefficients. Damping-coefficient data have not previously been presented for interlock seals. The test results support the following conclusions: (a) The interlock seal leaks substantially less than labyrinth seals. (b) Destabilizing forces are lower for the interlock seal. (c) The labyrinth seal has substantially greater direct damping values than the interlock seal. A complete rotordynamics analysis is needed to determine which type of seal would yield the best stability predictions for a given turbomachinery unit.


Author(s):  
Clemens Griebel

In this paper, different notch and partition wall arrangements of a fully partitioned pocket damper seal (FPDS) are investigated using computational fluid dynamics (CFD). The CFD model is derived for a baseline FPDS design reflecting the full sealing configuration with a structured mesh. Steady-state simulations are performed for eccentric rotor position and different operational parameters. The results are validated using experimental cavity pressure measurements. In transient computations, rotor whirl is modeled as a circular motion around an initial eccentricity using a moving mesh technique. Different whirl frequencies are computed to account for the frequency-dependent behavior of damper seals. The stiffness and damping coefficients are evaluated from the impedances in the frequency domain using a fast Fourier transform. The validated model is then transferred to varying designs. In addition to the baseline design, six different notch arrangements with constant clearance ratio were modeled. Moreover, two partition wall design variations were studied based on manufacturability considerations. Predicted leakage as well as frequency-dependent stiffness and damping coefficients are presented and the impact of geometry variations on these parameters is discussed. The results suggest that a single centered notch is favorable and indicate considerably higher effective damping for a design with staggered partition walls. A rounded partition wall design with significantly eased manufacturing reveals good performance.


Sign in / Sign up

Export Citation Format

Share Document