An Electromechanical Integrated Harmonic Piezodrive System

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Lizhong Xu ◽  
Huaiyong Li

An electromechanical integrated harmonic piezodrive system is proposed. The key of the proposed piezodrive system is the integration of the piezodrive principle with the harmonic drive and the movable tooth drive principles, which changes the sliding friction between the rotor and the vibrator into a rolling mesh. It can substantially increase the system's output torque, operating life, and efficiency. In this paper, the design of the drive system and its operating principles are presented. Under piezoelectric excitation, the deformation energy of the flexible ring was analyzed and the output torque of the drive system was calculated, revealing that the drive system produces a higher output torque than does a normal bar-type ultrasonic motor.

Author(s):  
Lizhong Xu ◽  
Lei Qin

The electromechanical integrated electrostatic harmonic drive is a new drive system invented by authors. The dynamic displacements of the flexible ring for the drive have important influence on operating performance of the drive system. In this paper, the three dimensional dynamic equations for the drive system are presented. The mode function equations and the frequency equation for the drive system are derived. The natural frequencies and dynamic displacements of the drive system are obtained. Using a finite element method analysis package, ANSYS, the natural frequencies and vibrating modes of the flexible ring for the drive system are simulated. The simulation results are compared to the analytical results above. The research is useful in design and manufacture of the drive system and can be used to design dynamic performance of the drive.


2012 ◽  
Vol 490-495 ◽  
pp. 432-436
Author(s):  
Xue Mei Guan ◽  
Li Zhong Xu

In this study, an electromechanical integrated electromagnetism worm drive is proposed and its operating principle is introduced. The equations of electromechanical coupled force and the systematic output torque for the drive are given by means of electromagnetism harmonic drive and permanent magnet worm drive transmission principle . By using an example to analysis the system output moment distribution. This paper lays the theoretic foundation for deeper theoretic analysis on drive and manufacture technologies study.


2021 ◽  
Vol 22 ◽  
pp. 12
Author(s):  
Dan Zhao ◽  
Lizhong Xu ◽  
Yuming Fu

In this paper, a micro electromagnetic harmonic drive system is proposed. Considering Van der Waals force, dynamics equation of the flexible ring for the micro drive system is deduced and resolved. Using the equations, the effects of the molecule force on the natural frequencies and vibration modes of the drive system are investigated. Results show that considering molecule force, natural frequencies of the flexible ring are reduced and its vibration modes are changed. For lower order modes, smaller clearance between the flexible ring and stator, smaller thickness of the flexible ring and larger radius of the flexible ring, the effects of the molecule force on the natural frequencies and vibration modes are more obvious.


Author(s):  
Lizhong Xu ◽  
Cuirong Zhu ◽  
Lei Qin ◽  
Yanling Zao

In this paper, a micro electromechanical integrated electrostatic harmonic drive system is presented. The operating principle of the MEMS is introduced. The exciting electric field force under exciting voltage is given. Based on the electromechanical coupled dynamic equations of the drive system, by generalized force and generalized coordinate, the forced response of the drive system to voltage excitation are obtained. The forced frequency responses of the drive system to voltage excitation are investigated. Changes of the frequency response along with the system parameters are given as well.


2021 ◽  
Vol 85 (1) ◽  
pp. 139-151
Author(s):  
Dan Zhao ◽  
Yuming Fu ◽  
Lizhong Xu
Keyword(s):  

2014 ◽  
Vol 7 (2) ◽  
pp. 721543 ◽  
Author(s):  
Lizhong Xu ◽  
Yongli Liang
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Lizhong Xu ◽  
Fen Wang

The electric excitation and the parameter excitation from mesh stiffness fluctuation are analyzed. The forced response equations of the drive system to the coupled excitations are presented. For the exciting frequencies far from and near natural frequencies, the forced responses of the drive system to the coupled excitations are investigated. Results show that the nonlinear forced responses of the drive system to the coupled excitations change periodically and unsteadily; the time period of the nonlinear forced responses depends on the frequencies of the electric excitation, the mesh parameter excitation, and the nonlinear natural frequencies of the drive system; in order to improve the dynamics performance of the drive system, the frequencies of the electric excitations should not be taken as integral multiple of the mesh parameter exciting frequency.


2004 ◽  
Vol 127 (4) ◽  
pp. 631-636 ◽  
Author(s):  
Donald R. Flugrad ◽  
Abir Z. Qamhiyah

Traction-drive speed reducers offer certain advantages over geared speed reducers. In particular, they generally run quieter than geared units and provide an opportunity for higher efficiency by eliminating sliding motion between contacting elements. In order to generate a sufficiently high output torque, some means must be provided to create a normal force between the rolling elements. This normal force, along with the friction coefficient, enables the device to transmit torque from one rolling member to the next. The speed reducer proposed here is designed so that the configuration of the rolling elements creates the needed normal force in response to the torque exerted back on the system by the downstream loading. Thus the device is self-actuating. Since the normal force is only present when needed, the rolling elements of the device can readily be disengaged, thus eliminating the need for a separate clutch in the drive system. This feature can be exploited to design a transmission with several distinct speed ratios that can be engaged and disengaged in response to changing speed requirements.


2014 ◽  
Vol 22 (7) ◽  
pp. 1842-1850 ◽  
Author(s):  
黑沫 HEI Mo ◽  
范世珣 FAN Shi-xun ◽  
廖洪波 LIAO Hong-bo ◽  
周擎坤 ZHOU Qing-kun ◽  
范大鹏 FAN Da-peng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document