Large Eddy Simulations of a Stratified Shear Layer

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Hieu T. Pham ◽  
Sutanu Sarkar

The performance of the large eddy simulation (LES) approach in predicting the evolution of a shear layer in the presence of stratification is evaluated. The LES uses a dynamic procedure to compute subgrid model coefficients based on filtered velocity and density fields. Two simulations at different Reynolds numbers are simulated on the same computational grid. The fine LES simulated at a low Reynolds number produces excellent agreement with direct numerical simulations (DNS): the linear evolution of momentum thickness and bulk Richardson number followed by an asymptotic approach to constant values is correctly represented and the evolution of the integrated turbulent kinetic energy budget is well captured. The model coefficients computed from the velocity and the density fields are similar and have a value in range of 0.01-0.02. The coarse LES simulated at a higher Reynolds number Re = 50,000 shows acceptable results in terms of the bulk characteristics of the shear layer, such as momentum thickness and bulk Richardson number. Analysis of the turbulent budgets shows that, while the subgrid stress is able to remove sufficient energy from the resolved velocity fields, the subgrid scalar flux and thereby the subgrid scalar dissipation are underestimated by the model.

2009 ◽  
Vol 620 ◽  
pp. 383-411 ◽  
Author(s):  
JUNGWOO KIM ◽  
HAECHEON CHOI

In the present study, the effects of the jet inflow conditions such as the initial momentum thickness (θ) and background disturbances on the downstream evolution of a circular jet are investigated using large eddy simulation (LES). We consider four different initial momentum thicknesses,D/θ = 50, 80, 120 and 180, and three different Reynolds numbers,ReD=UJD/ν = 3600, 104and 105, whereUJis the jet inflow velocity andDis the jet diameter. The present study shows that the jet characteristics significantly depend on both the initial momentum thickness and the Reynolds number. For all the Reynolds numbers considered in this study, vortex rings are generated at an earlier position with decreasing initial momentum thickness. In case of a relatively low Reynolds number ofReD= 3600, at smaller initial momentum thickness, early growth of the shear layer due to the early generation of vortex ring leads to the occurrence of large-scale coherent structures in earlier downstream locations, which results in larger mixing enhancement and more rapid increase in turbulence intensity. However, at a high Reynolds number such asReD= 105, with decreasing initial momentum thickness, rapid growth of the shear layer leads to the saturation of the shear layer and the generation of fine-scale turbulence structures, which reduces mixing and turbulence intensity. With increasingReθ(=UJθ/ν), the characteristic frequency corresponding to the shear layer mode (Stθ=fθ/UJ) gradually increases and reaches near 0.017 predicted from the inviscid instability theory. On the other hand, the frequency corresponding to the jet-preferred mode (StD=f D/UJ) varies depending onReDandD/θ. From a mode analysis, we show that, in view of the energy of the axial velocity fluctuations integrated over the radial direction, the double-helix mode (mode 2) becomes dominant past the potential core, but the axisymmetric mode (mode 0) is dominant near the jet exit. In view of the local energy, the disturbances grow along the shear layer near the jet exit: for thick shear layer, mode 0 grows much faster than other modes, but modes 0–3 grow almost simultaneously for thin shear layer. However, past the potential core, the dominant mode changes from mode 0 near the centreline to mode 1 and then to mode 2 with increasing radial direction regardless of the initial shear layer thickness.


Author(s):  
L. Fang ◽  
L. Shao ◽  
J. P. Bertoglio ◽  
L. P. Lu ◽  
Z. S. Zhang

In large eddy simulation of turbulent flow, because of the spatial filter, inhomogeneity and anisotropy affect the subgrid stress via the mean flow gradient. A method of evaluating the mean effects is to split the subgrid stress tensor into “rapid” and “slow” parts. This decomposition was introduced by Shao et al. (1999) and applied to A Priori tests of existing subgrid models in the case of a turbulent mixing layer. In the present work, the decomposition is extended to the case of a passive scalar in inhomogeneous turbulence. The contributions of rapid and slow subgrid scalar flux, both in the equations of scalar variance and scalar flux, are analyzed. A Priori numerical tests are performed in a turbulent Couette flow with a mean scalar gradient. Results are then used to evaluate the performances of different popular subgrid scalar models. It is shown that existing models can not well simulate the slow part and need to be improved. In order to improve the modeling, an extension of the model proposed by Cui et al. (2004) is introduced for the slow part, whereas the Scale-Similarity model is used reproduce the rapid part. Combining both models, A Priori tests lead to a better performance. However, the remaining problem is that none eddy-diffusion model can correctly represent the strong scalar dissipation near the wall. This problem will be addressed in future work.


2014 ◽  
Vol 759 ◽  
pp. 579-611 ◽  
Author(s):  
Jae Hwan Jung ◽  
Hyun Sik Yoon

AbstractWe consider a twisted cylinder that was designed by rotating the elliptic cross-section along the spanwise direction, resulting in a passive control. The flow over the twisted cylinder is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation based on the finite volume method. For comparison, the flow past smooth and wavy cylinders is also calculated. The twisted cylinder achieves reductions of approximately 13 and 5 % in mean drag compared with smooth and wavy cylinders, respectively. In particular, the root mean square (r.m.s.) value of the lift fluctuation of the twisted cylinder shows a substantial decrease of approximately 96 % compared with the smooth cylinder. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and wavy cylinders, and vortex shedding from the twisted cylinder is considerably suppressed. Consequently, the elongation of the shear layer from the body and the near disappearance of vortex shedding in the near wake with weak vortical strength contributes directly to the reduction of drag and lift oscillation. Various fundamental mechanisms that affect the flow phenomena, three-dimensional separation, pressure coefficient, vortex formation length and turbulent kinetic energy are examined systematically to demonstrate the effect of the twisted cylinder surface. In addition, for the twisted cylinder at $\mathit{Re}=3000$, the effect of the cross-sectional aspect ratio is investigated from 1.25 to 2.25 to find an optimal value that can reduce the drag and lift forces. Moreover, the effect of the Reynolds number on the aerodynamic characteristics is investigated in the range of $3\times 10^{3}\leqslant \mathit{Re}\leqslant 1\times 10^{4}$. We find that as Re increases, the mean drag and the r.m.s. lift coefficient of the twisted cylinder increase, and the vortex formation length decreases.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Yuchuan Wang ◽  
Lei Tan ◽  
Binbin Wang ◽  
Shuliang Cao ◽  
Baoshan Zhu

Large eddy simulation (LES) approach was used to investigate jumps of primary frequency of shear layer flow over a cavity. Comparisons between computational results and experimental data show that LES is an appropriate approach to accurately capturing the critical values of velocity and cavity length of a frequency jump, as well as characteristics of the separated shear layer. The drive force of the self-sustained oscillation of impinging shear layer is fluid injection and reinjection. Flow patterns in the shear layer and cavity before and after the frequency jump demonstrate that the frequency jump is associated with vortex–corner interaction. Before frequency jump, a mature vortex structure is observed in shear layer. The vortex is clipped by impinging corner at approximately half of its size, which induces strong vortex–corner interaction. After frequency jump, successive vortices almost escape from impinging corner without the generation of a mature vortex, thereby indicating weaker vortex–corner interaction. Two wave peaks are observed in the shear layer after the frequency jump because of: (1) vortex–corner interaction and (2) centrifugal instability in cavity. Pressure fluctuations inside the cavity are well regulated with respect to time. Peak values of correlation coefficients close to zero time lags indicate the existence of standing waves inside the cavity. Transitions from a linear to a nonlinear process occurs at the same position (i.e., x/H = 0.7) for both velocity and cavity length variations. Slopes of linear region are solely the function of cavity length, thereby showing increased steepness with increased cavity length.


Sign in / Sign up

Export Citation Format

Share Document