A Novel Nonlinear Modeling and Dynamic Analysis of Solenoid Actuated Butterfly Valves Coupled in Series

Author(s):  
Peiman Naseradinmousavi

In this paper, we focus on a novel nonlinear modeling and dynamic analysis of the actuated butterfly valves coupled in series. The actuated valves used in the chilled water systems of the U.S. Navy and commercial ships, namely, “smart valves,” recently have received much attention when many of them are operating in a complex network. The network regulates the pressure of the pipeline, while several nonlinear torques/forces including the hydrodynamic and bearing torques and the magnetomotive force affect the performance of each set individually and subsequently the whole system via the couplings among the valves. The contribution of this work is to model such couplings in the presence of the nonlinearities and an applied periodic noise and then carry out dynamic analysis of the valves. We examine the model developed with/without actuation by applying a periodic noise on the upstream valve to capture the couplings among the parameters of both the actuators and valves. This would help us predict the behavior of a particular valve in the network subject to motions of other valves.

1982 ◽  
Vol 22 (3) ◽  
pp. 287-288 ◽  
Author(s):  
M.S. Sodha ◽  
G.N. Tiwari
Keyword(s):  

Author(s):  
Lenka Skanderova ◽  
Ivan Zelinka

In this work, we investigate the dynamics of Differential Evolution (DE) using complex networks. In this pursuit, we would like to clarify the term complex network and analyze its properties briefly. This chapter presents a novel method for analysis of the dynamics of evolutionary algorithms in the form of complex networks. We discuss the analogy between individuals in populations in an arbitrary evolutionary algorithm and vertices of a complex network as well as between edges in a complex network and communication between individuals in a population. We also discuss the dynamics of the analysis.


2020 ◽  
Vol 209 ◽  
pp. 109695
Author(s):  
Jiewen Deng ◽  
Shi He ◽  
Qingpeng Wei ◽  
Mei Liang ◽  
Zhigang Hao ◽  
...  

Author(s):  
Gang Wang ◽  
Mingsheng Liu ◽  
David Claridge

Heating and cooling energy consumption measurements are critical for operations, controls, and fault detection and diagnosis of heating, ventilation and air conditioning (HVAC) systems. Generally water flow has to be measured in order to determine energy consumption in either chilled water systems or hot water systems. Economical and accurate water flow measurements are essential to develop energy meters. Since pump performance relates actual pump water flow to pump head and power, theoretically water flow through a pump can be determined by other pump performance characteristics, such as pump head and motor power. This paper presents the theoretical model of pump flow stations based on pump head and motor power, and the experiments and results of a cooling energy meter using a pump flow station developed on the chilled water system at a facility.


Sign in / Sign up

Export Citation Format

Share Document