Neutron Diffraction Measurement and Numerical Simulation to Study the Effect of Repair Depth on Residual Stress in 316L Stainless Steel Repair Weld

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Wenchun Jiang ◽  
Yun Luo ◽  
BingYing Wang ◽  
Wanchuck Woo ◽  
S. T. Tu

Welding is often used to repair the defects in pressure vessels and piping, but residual stresses are generated inevitably and have a great effect on structure integrity. According to the defect size, different repair depth will be carried out, which leads to different stress state. In this paper, the effect of repair depth on residual stress in 316L stainless steel repair weld has been studied by neutron diffraction measurement and finite element modeling (FEM). The results show that the residual stresses in the deep repair are larger than those in shallow repair weld, because the deep repair involves multipass welding and brings a serious work hardening. In the weld metal, the longitudinal stress has exceeded the yield stress, and increases slightly with the increase of repair depth. In contrast to the longitudinal stress, the transverse stress is more sensitive to the repair depth. With the increase of repair depth, the transverse stress increases and even exceeds the yield strength as the repair depth is 45% of the plate thickness. At the bottom surface of the plate and heat affected zone (HAZ), both the longitudinal and transverse stresses increase as the repair depth increases. It also shows that the mixed hardening model gives the best agreement with the measurement, while isotropic and kinematic hardening models cause an overestimation and underestimation, respectively. Therefore, the mixed hardening model is recommended for the prediction of residual stresses.

2016 ◽  
Vol 35 (6) ◽  
pp. 567-574 ◽  
Author(s):  
Wenchun Jiang ◽  
Zhiquan Wei ◽  
Yun Luo ◽  
Weiya Zhang ◽  
Wanchuck Woo

AbstractThis paper uses finite element method and neutron diffraction measurement to study the residual stress in lattice truss sandwich structure. A comparison of residual stress and thermal deformation between X-type and pyramidal lattice truss sandwich structure has been carried out. The residual stresses are concentrated in the middle joint and then decreases gradually to both the ends. The residual stresses in the X-type lattice truss sandwich structure are smaller than those in pyramidal structure. The maximum longitudinal and transverse stresses of pyramidal structure are 220 and 202 MPa, respectively, but they decrease to 190 and 145 MPa for X-type lattice truss sandwich structure, respectively. The thermal deformation for lattice truss sandwich panel structure is of wave shape. The X-type has a better resistance to thermal deformation than pyramidal lattice truss sandwich structure. The maximum wave deformation of pyramidal structure (0.02 mm) is about twice as that of X-type (0.01 mm) at the same brazing condition.


Author(s):  
K. Ogawa ◽  
L. O. Chidwick ◽  
E. J. Kingston ◽  
R. Dennis ◽  
D. Bray ◽  
...  

This paper presents results from a program of residual stress measurements and modelling carried out for a pipe girth weld of 369 mm outer diameter and 40 mm thickness. The component consisted of two 316 stainless steel pipe sections joined together using a “single-V” nickel base alloy (alloy 82) weld. The residual stresses were measured using the Deep-Hole Drilling (DHD) technique and modelled using ABAQUS. Biaxial, through-thickness residual stresses were measured through the weld centreline at a total of 6 different locations around the component. At three of the measurement locations the DHD process was carried out from the outer surface of the component with the remaining three, one of which coinciding with the weld start/stop position, carried out from the inner surface of the component. The differences in DHD process application (i.e. outer-to-inner or inner-to-outer) was carried out as a sub-objective to investigate the sequence of residual stress relaxation and its influence on the measured results. Good measurement repeatability was found between all locations. The hoop residual stresses were tensile at the outer surface, increasing to a maximum of 350 MPa at 10 mm depth, then decreasing to a minimum of −325 MPa at a depth of 34 mm, before increasing again towards the inner surface. The axial residual stresses were found to be similar in profile to the hoop residual stresses albeit lower in absolute magnitude by roughly 100 MPa. For this component it was found that the hoop residual stresses showed an influence of process direction, whereas for the axial residual stresses no influence was found. The modelling of the residual stresses generated was undertaken using a 2D axisymmetric finite element analysis containing 25 discrete weld beads. Each of the 25 weld beads were analysed sequentially using the following stages: heat source modelling, thermal analysis, elastic-plastic mechanical analysis. The sensitivity of the residual stresses generated with respect to the material hardening model used was investigated (i.e. kinematic, isotropic and mixed mode – kinematic/isotropic). Generally, the isotropic hardening model produces the highest predictions, the kinematic hardening model produces the lowest predictions with the mixed mode model lying in-between. Good agreement was found between the measured and modelled residual stresses. The main discrepancy existed in the hoop direction with the modelled residual stresses being the most tensile by roughly 200 MPa at depths within 15 mm of the outer surface of the pipe.


2014 ◽  
Vol 777 ◽  
pp. 99-104
Author(s):  
Priyesh Kapadia ◽  
Catrin M. Davies ◽  
Thilo Pirling ◽  
David W. Dean ◽  
Kamran M. Nikbin

In a study to investigate the effect of residual stress relaxation on Creep Crack Growth (CCG) a novel fracture mechanics specimen has been designed. Compact Tension, C(T), specimens are fabricated from blocks with Electron Beam (EB) welds such that residual stresses induced during welding are retained in the specimen. Finite element analyses of EB welding and machining processes have been developed to predict the stresses in such C(T) specimens which will drive crack growth in future CCG studies. The residual stresses and strains in these samples have been quantified using the neutron diffraction measurement technique at various stages of the fabrication process and have been used to validate numerical simulations of the fabrication processes.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Yun Luo ◽  
Wenchun Jiang ◽  
Dongfeng Chen ◽  
Robert C. Wimpory ◽  
Meijuan Li ◽  
...  

Repair welding is a popular method to repair the leakage zone in tube-to-tubesheet joint of shell-tube heat exchangers. But the repaired residual stresses are generated inevitably and have a great effect on stress corrosion cracking (SCC). In this paper, the effects of repair welding on residual stress were studied by finite element method (FEM) and neutron diffraction measurement. The original weld residual stresses calculated by FEM showed good agreement with neutron diffraction measurement results. After repair welding, the transverse residual stresses change very little while the longitudinal residual stresses are increased in the repair zone. In the nonrepair zone, both the transverse and longitudinal stresses are decreased. The repair welding times have little effect on residual stress distribution. With the increase of welding length and heat input, the residual stresses increase. Repair opposite to the original welding direction is recommended because the opposite welding direction minimizes the residual stresses.


2018 ◽  
Vol 2 (4) ◽  
pp. 21 ◽  
Author(s):  
Makoto Hayashi ◽  
John Root ◽  
Ronald Rogge ◽  
Pingguang Xu

The rolled joint of a pressure tube, consisting of three axial symmetric parts, modified SUS403 stainless steel as an inner extension, Zr–2.5Nb as the pressure tube and an Inconel-718 outer sleeve has been examined by neutron diffraction for residual stresses. It was heat treated to 350 °C for 30, 130 and 635 h to simulate thermal aging over the lifetime of an advanced thermal reactor respectively for 1, 5 and 30 years at an operating temperature of 288 °C. The crystallographic texture has been investigated from cylindric disks cut from the heat treated Zr–2.5Nb pressure tube to determine the proper sample-orientation-dependent hkl reflections for reliable residual strain measurements. Corresponding in situ tensile deformation was carried out to obtain the necessary diffraction elastic constants for the residual stress evaluation. Three-dimensional crystal lattice strains at various locations in the rolled joint before and after the aging treatments for various times were non-destructively measured by neutron diffraction and the residual stress distribution in the rolled joint was evaluated by using the Kröner elastic model and the generalized Hooke’s law. In the crimp region of the rolled joint, it was found that the aging treatment had a much weaker effect on the residual stresses in the Inconel outer sleeve and the modified SUS403 stainless steel extension. In the non-aged Zr–2.5Nb pressure tube, the highest residual stresses were found near its interface with the modified SUS430 stainless steel extension. In the crimp region of the Zr–2.5Nb pressure tube near its interface with the modified SUS430 stainless steel, the average compressive axial stress was −440 MPa, having no evident change during the long-time aging. In the Zr–2.5Nb pressure tube outside closest to the crimp region, the tensile axial and hoop stresses were relieved during the 30 h of aging. The hoop stresses in the crimp region evolved from an average tensile stress of 80 MPa to an average compressive stress of 230 MPa after the 635 h of aging, suggesting that the rolled joint had a good long-term sealing ability against leakage of high temperature water. In the Zr–2.5Nb pressure tube close to the reactor core and far away from the modified SUS403 stainless steel extension, the residual stresses near the inside surface of the pressure tube were almost zero, helping to keep a good neutron irradiation resistance.


Sign in / Sign up

Export Citation Format

Share Document