Experimental and Finite Element Simulation of Wear in Nanostructured NiAl Coating

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
H. Tavoosi ◽  
S. Ziaei-Rad ◽  
F. Karimzadeh ◽  
S. Akbarzadeh

In this paper, the wear of nanostructured NiAl coating was studied both experimentally and numerically. First, the nanocrystalline NiAl intermetallic powder was synthesized by mechanical alloying (MA) of aluminum and Ni powders. The coatings were deposited onto the low carbon steel substrate using high velocity oxy-fuel (HVOF) technique. Nanoindentation test was conducted to find out the mechanical properties of the coating. The dry wear tests were then performed using a pin-on-block test rig under different operating conditions. Finally, finite element (FE) method was employed to model the wear characteristics of the prepared nanostructured material. A three-dimensional (3D) FE model was created and used to simulate the pin-on-block experiments. The results show that the volume losses predicted by the numerical analysis are in good agreement with the experimental data.

2012 ◽  
Vol 605-607 ◽  
pp. 1372-1376
Author(s):  
Qiu Dong He ◽  
Wen Qi Yu ◽  
Shu Fen Xiao

To improve the impeller safety and reliability of extractable explosion-proof contra-rotating axial fan for mine local ventilation, Extractable Fan FBDC№9.0/2×30 was taken as the research object, and an approximate three-dimensional finite element computation model was built by using ANSYS software. The stress and displacement were calculated, too. By testing, the fan works stably. The air quantity is 655-978 m3/min, total pressure, 3443-412Pa, static pressure, 3314-118Pa. And the highest static pressure efficiency is up to 70.35%, A-weight Specific Sound Level is 17.5dB. Furthermore, the intension and stiffness of the impeller meet requirements. Sample test and field using show that the computation and the model of this impeller are right. Through reasonable design, the impeller of contra-rotating axial fan with equally-thick circular arc blade profile and ordinary hot-rolling low-carbon steel blades has the intension and the stiffness which meets demands, and the air performance reaches higher level.


Author(s):  
K Polgar ◽  
H S Gill ◽  
M Viceconti ◽  
D W Murray ◽  
J J O'Connor

The human femur is one of the parts of the musculo-skeletal system most frequently analysed by means of the finite element (FE) method. Most FE studies of the human femur are based on computed tomography data sets of a particular femur. Since the geometry of the chosen sample anatomy influences the computed results, direct comparison across various models is often difficult or impossible. The aim of the present work was to develop and validate a novel three-dimensional FE model of the human femur based on the muscle standardized femur (MuscleSF) geometry. In the new MuscleSF FE model, the femoral attachment of each muscle was meshed separately on the external bone surface. The model was tested under simple load configurations and the results showed good agreement with the converged solution of a former study. In the future, using the validated MuscleSF FE model for numerical studies of the human femur will provide the following benefits: (a) the numerical accuracy of the model is known; (b) muscle attachment areas are incorporated in the model, therefore physiological loading conditions can be easily defined; (c) analyses of the femur under physiological load cases will be replicable; (d) results based on different load configurations could be compared across various studies.


2015 ◽  
Vol 23 (9) ◽  
pp. 1480-1494 ◽  
Author(s):  
Zhaoye Qin ◽  
Delin Cui ◽  
Shaoze Yan ◽  
Fulei Chu

Due to frictional slippage between the joint components, clamp band joints may generate nonlinear stiffness and friction damping, which will affect the dynamics of the joint structures. Accurate modeling of the frictional behavior in clamp band joints is crucial for reliable estimation of the joint structure dynamics. While the finite element (FE) method is a powerful tool to analyze structures assembled with joints, it is computationally expensive and inefficient to perform transient analyses with three-dimensional (3D) FE models involving contact nonlinearity. In this paper, a two-dimensional (2D) FE model of much more efficiency is applied to investigate the dynamics of a clamp band jointed structure subjected to longitudinal base excitations. Prior to dynamic analyses, the sources of the model inaccuracy are determined, upon which a two-step model updating technique is proposed to improve the accuracy of the 2D model in accordance with the quasi-static test data. Then, based on the updated 2D model, the nonlinear influence of the clamp band joint on the dynamic response of the joint structure is investigated. Sine-sweep tests are carried out to validate the updated 2D FE model. The FE modeling and updating techniques proposed here can be applied to other types of structures of cyclic symmetry to develop accurate model with high computational efficiency.


1997 ◽  
Vol 119 (3) ◽  
pp. 462-470 ◽  
Author(s):  
M. R. Lovell ◽  
M. M. Khonsari ◽  
R. D. Marangoni

Using a three-dimensional finite element model, the hysteresis friction behavior of coated ball bearings is investigated. Ninety-six distinct operating conditions were examined by the finite element model that include normal loads of 81.6, 133.5, and 185.4 N per ball, ball diameters of .0127 m and .0191 m, ball materials of Si3N4 and steel, substrate materials of Si3N4 and steel, and coating materials of MoS2, NbSe2, Si3N4, and steel. From the finite element results, general trends for the two parameters of Dahl’s friction model, the rest slope, σ, and the steady friction torque, Ts, are established for coated surfaces. By performing a regression analysis of the data points, empirical expressions for σ and Ts are derived for coated bearing surfaces. These expressions are authenticated by comparisons to laboratory experimental results.


2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2017 ◽  
Vol 14 (130) ◽  
pp. 20170202 ◽  
Author(s):  
Joseph Libby ◽  
Arsalan Marghoub ◽  
David Johnson ◽  
Roman H. Khonsari ◽  
Michael J. Fagan ◽  
...  

During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates.


Sign in / Sign up

Export Citation Format

Share Document