scholarly journals Cartilage Strain Distributions Are Different Under the Same Load in the Central and Peripheral Tibial Plateau Regions

2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Paul Briant ◽  
Scott Bevill ◽  
Thomas Andriacchi

There is increasing evidence that the regional spatial variations in the biological and mechanical properties of articular cartilage are an important consideration in the pathogenesis of knee osteoarthritis (OA) following kinematic changes at the knee due to joint destabilizing events (such as an anterior cruciate ligament (ACL) injury). Thus, given the sensitivity of chondrocytes to the mechanical environment, understanding the internal mechanical strains in knee articular cartilage under macroscopic loads is an important element in understanding knee OA. The purpose of this study was to test the hypothesis that cartilage from the central and peripheral regions of the tibial plateau has different internal strain distributions under the same applied load. The internal matrix strain distribution for each specimen was measured on osteochondral blocks from the tibial plateau of mature ovine stifle joints. Each specimen was loaded cyclically for 20 min, after which the specimen was cryofixed in its deformed position and freeze fractured. The internal matrix was viewed in a scanning electron microscope (SEM) and internal strains were measured by quantifying the deformation of the collagen fiber network. The peak surface tensile strain, maximum principal strain, and maximum shear strain were compared between the regions. The results demonstrated significantly different internal mechanical strain distributions between the central and peripheral regions of tibial plateau articular cartilage under both the same applied load and same applied nominal strain. These differences in the above strain measures were due to differences in the deformation patterns of the collagen network between the central and peripheral regions. Taken together with previous studies demonstrating differences in the biochemical response of chondrocytes from the central and peripheral regions of the tibial plateau to mechanical load, the differences in collagen network deformation observed in this study help to provide a fundamental basis for understanding the association between altered knee joint kinematics and premature knee OA.

Author(s):  
Lingmin Li ◽  
Shantanu Patil ◽  
Nick Steklov ◽  
Won Bae ◽  
Darryl D. D’Lima ◽  
...  

The mechanism by which altered knee joint motions and loads (e.g., following anterior cruciate ligament (ACL) injury) contribute to the development of knee osteoarthritis (OA) is not well understood. One mechanobiological hypothesis is that articular cartilage degradation is initiated when altered knee kinematics increase loading on certain regions of the articular surfaces and decrease loading on other regions [1]. If homeostatic loading conditions vary from region to region, then load changes induced by altered kinematics could initiate cartilage degradation in a site-specific manner. This hypothesis is attractive from a computational simulation perspective since it is based on mechanical factors that lend themselves well to physical modeling. If computational simulations could predict the knee OA development process, then they could potentially be used to facilitate the design of new or improved treatments for the disease.


2020 ◽  
Vol 10 (23) ◽  
pp. 8673 ◽  
Author(s):  
Johannes Pordzik ◽  
Anke Bernstein ◽  
Julius Watrinet ◽  
Hermann O. Mayr ◽  
Sergio H. Latorre ◽  
...  

Just like menisci, articular cartilage is exposed to constant and varying stresses. Injuries to the meniscus are associated with the development of gonarthritis. Both the articular cartilage and the menisci are subject to structural changes under gonarthritis. The aim of this study was to investigate biomechanical alterations in articular cartilage and the menisci under gonarthritis by applying an indentation method. The study assessed 11 menisci from body donors as controls and 21 menisci from patients with severe gonarthritis. For the simultaneous examination of the articular cartilage and the menisci, we only tested the joint surfaces of the tibial plateau covered by the corresponding menisci. Over the posterior horn of the meniscus, the maximum applied load—the highest load registered by the load cell—of the arthritic samples of 0.02 ± 0.02 N was significantly greater (p = 0.04) than the maximum applied load of the arthritis-free samples of 0.01 ± 0.01 N. The instantaneous modulus (IM) at the center of the arthritic cartilage covered by the meniscus with 3.5 ± 2.02 MPa was significantly smaller than the IM of the arthritis-free samples with 5.17 ± 1.88 MPa (p = 0.04). No significant difference was found in the thickness of the meniscus-covered articular cartilage between the arthritic and arthritis-free samples. Significant correlations between the articular cartilage and the corresponding menisci were not observed at any point. In this study, the biomechanical changes associated with gonarthritis affected the posterior horn of the meniscus and the mid region of the meniscus-covered articular cartilage. The assessment of cartilage thickness as a structural characteristic of osteoarthritis may be misleading with regard to the interpretation of articular cartilage’s biomechanical properties.


Author(s):  
Lingmin Li ◽  
Shantanu Patil ◽  
Nick Steklov ◽  
Won Bae ◽  
Michele Temple-Wong ◽  
...  

The mechanism by which altered knee joint motions and loads (e.g., following anterior cruciate ligament (ACL) injury) contribute to the development of knee osteoarthritis (OA) is not well understood. One mechanobiological hypothesis is that articular cartilage degradation is initiated when altered knee kinematics increase loading on certain regions of the articular surfaces and decrease loading on other regions [1,2]. If homeostatic loading conditions vary from region to region, then load changes induced by altered kinematics could initiate cartilage degradation in a site-specific manner. This hypothesis is attractive from a computational simulation perspective since it is based on mechanical factors that lend themselves well to physical modeling. If computational simulations could reproduce the knee OA development process, then they potentially could be used to facilitate the design of new or improved treatments for the disease.


Cartilage ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Jessica Immonen ◽  
Chris Siefring ◽  
Luke Sanders

The objective of this study was to analyze morphometric anatomy and damages with aging in cadaveric knee specimens specific to the cruciate ligaments, the articular cartilage of the tibial plateau, and the menisci. Morphometric analyses to cadaveric anatomy of the knee were performed using Image-Pro® software on 3 age populations: <70 years old, 70 to 79 years old, and ≥80 years old. An average thickness of the cruciate ligaments was assessed with 5 circumferential measurements per specimen using nylon thread. Percent degeneration of the tibial plateau’s articular cartilage and coverage by menisci was assessed with surface area measurements. The articular cartilage of the medial tibial plateau in ≥80 years old specimens showed a 1.7-fold increase in surface area degeneration (mm2) compared to 70 to 79 years old specimens ( P < 0.05). The medial meniscus also experienced degenerative changes with aging, which were expressed as decreases in tibial plateau coverage. The anterior cruciate ligament (ACL) experienced substantial degenerative thinning with aging. The 70 to 79 years old specimens had a 1.2-fold (10.5%) decrease in average ACL circumference (mm) compared to the <70 years old specimens ( P < 0.001). The ≥80 years old specimens had a 1.24-fold (19%) decrease in ACL circumference compared to the <70 years old specimens ( P < 0.001). ACL thinning during aging may be leading to substantial articular cartilage and menisci degeneration given the cruciate ligaments are a primary restraint that combats shearing forces at the knee joint.


2008 ◽  
Vol 36 (10) ◽  
pp. 1966-1977 ◽  
Author(s):  
Eric G. Meyer ◽  
Timothy G. Baumer ◽  
Jill M. Slade ◽  
Walter E. Smith ◽  
Roger C. Haut

Background The knee is one of the most frequently injured joints, including 80 000 anterior cruciate ligament (ACL) tears in the United States each year. Bone bruises are seen in over 80% of patients with ACL injuries, and have been associated with an overt loss of cartilage overlying those regions within 6 months of injury. Hypothesis The level of contact pressure developed in the human knee joint and the extent of articular cartilage and underlying subchondral bone injuries will depend on the mechanism of applied loads/moments during rupture of the ACL. Study Design Controlled laboratory study. Methods Seven knee pairs, flexed to 30°, were loaded in compression or internal torsion until injury. Pressure-sensitive film recorded the magnitude and location of contact. Histologic analysis and magnetic resonance imaging were used to document microtrauma to the tibial plateau cartilage and subchondral bone. Results All specimens suffered ACL injury, either in the form of a midsubstance rupture or avulsion fracture. The contact area and pressures were higher for compression than torsion experiments. After being loaded, the articular cartilage in the central and posterior regions of the medial tibial plateau showed increased magnetic resonance imaging signal intensity, corresponding to an increased susceptibility to absorb water. Histologically, there were more microcracks in the subchondral bone and more articular cartilage damage in the compression than torsion experiments. Conclusion Significant damage occurs to the articular cartilage and underlying subchondral bone during rupture of the ACL. The types and extent of these tissue injuries are a function of the mechanism of ACL rupture. Clinical Relevance Patients suffering an ACL injury may be at risk of osteochondral damage, especially if the mechanism of injury involves a high compressive loading component, such as during a jump landing.


2021 ◽  
pp. 036354652110282
Author(s):  
Robert H. Brophy ◽  
Laura J. Huston ◽  
Isaac Briskin ◽  
Annunziato Amendola ◽  
Charles L. Cox ◽  
...  

Background: Articular cartilage and meniscal damage are commonly encountered and often treated at the time of anterior cruciate ligament reconstruction (ACLR). Our understanding of how these injuries and their treatment relate to outcomes of ACLR is still evolving. Hypothesis/Purpose: The purpose of this study was to assess whether articular cartilage and meniscal variables are predictive of 10-year outcomes after ACLR. We hypothesized that articular cartilage lesions and meniscal tears and treatment would be predictors of the International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS) (all 5 subscales), and Marx activity level outcomes at 10-year follow-up after ACLR. Study Design: Cohort study (prognosis); Level of evidence, 1. Methods: Between 2002 and 2008, individuals with ACLR were prospectively enrolled and followed longitudinally using the IKDC, KOOS, and Marx activity score completed at entry, 2, 6, and 10 years. A proportional odds logistic regression model was built incorporating variables from patient characteristics, surgical technique, articular cartilage injuries, and meniscal tears and treatment to determine the predictors (risk factors) of IKDC, KOOS, and Marx outcomes at 10 years. Results: A total of 3273 patients were enrolled (56% male; median age, 23 years at time of enrollment). Ten-year follow-up was obtained on 79% (2575/3273) of the cohort. Incidence of concomitant pathology at the time of surgery consisted of the following: articular cartilage (medial femoral condyle [MFC], 22%; lateral femoral condyle [LFC], 15%; medial tibial plateau [MTP], 4%; lateral tibial plateau [LTP], 11%; patella, 18%; trochlea, 8%) and meniscal pathology (medial, 37%; lateral, 46%). Variables that were predictive of poorer 10-year outcomes included articular cartilage damage in the patellofemoral ( P < .01) and medial ( P < .05) compartments and previous medial meniscal surgery (7% of knees; P < .04). Compared with no meniscal tear, a meniscal injury was not associated with 10-year outcomes. Medial meniscal repair at the time of ACLR was associated with worse 10-year outcomes for 2 of 5 KOOS subscales, while a medial meniscal repair in knees with grade 2 MFC chondrosis was associated with better outcomes on 2 KOOS subscales. Conclusion: Articular cartilage injury in the patellofemoral and medial compartments at the time of ACLR and a history of medial meniscal surgery before ACLR were associated with poorer 10-year ACLR patient-reported outcomes, but meniscal injury present at the time of ACLR was not. There was limited and conflicting association of medial meniscal repair with these outcomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Yajun ◽  
Cui Jin ◽  
Gu Zhengrong ◽  
Fang Chao ◽  
Hu Yan ◽  
...  

Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.


2018 ◽  
Author(s):  
Grischa Bratke ◽  
Steffen Willwacher ◽  
David Maintz ◽  
Gert-Peter Brüggemann

Sign in / Sign up

Export Citation Format

Share Document