Effect of Meniscus Curvature on Apparent Thermal Slip

2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Lisa Steigerwalt Lam ◽  
Marc Hodes ◽  
Georgios Karamanis ◽  
Toby Kirk ◽  
Scott MacLachlan

We analytically consider the effect of meniscus curvature on heat transfer to laminar flow across structured surfaces. The surfaces considered are composed of ridges. Curvature of the menisci, which separates liquid in the Cassie state and gas trapped in cavities between the ridges, results from the pressure difference between the liquid and the gas. A boundary perturbation approach is used to develop expressions that account for the change in the temperature field in the limit of small curvature of a meniscus. The meniscus is considered adiabatic and a constant heat flux boundary condition is prescribed at the tips of the ridges in a semi-infinite and periodic domain. A solution for a constant temperature ridge is also presented using existing results from a mathematically equivalent hydrodynamic problem. We provide approximate expressions for the apparent thermal slip length as function of solid fraction over a range of small meniscus protrusion angles. Numerical results show good agreement with the perturbation results for protrusion angles up to ± 20 deg.

2016 ◽  
Vol 811 ◽  
pp. 315-349 ◽  
Author(s):  
Toby L. Kirk ◽  
Marc Hodes ◽  
Demetrios T. Papageorgiou

We investigate forced convection in a parallel-plate-geometry microchannel with superhydrophobic walls consisting of a periodic array of ridges aligned parallel to the direction of a Poiseuille flow. In the dewetted (Cassie) state, the liquid contacts the channel walls only at the tips of the ridges, where we apply a constant-heat-flux boundary condition. The subsequent hydrodynamic and thermal problems within the liquid are then analysed accounting for curvature of the liquid–gas interface (meniscus) using boundary perturbation, assuming a small deflection from flat. The effects of this surface deformation on both the effective hydrodynamic slip length and the Nusselt number are computed analytically in the form of eigenfunction expansions, reducing the problem to a set of dual series equations for the expansion coefficients which must, in general, be solved numerically. The Nusselt number quantifies the convective heat transfer, the results for which are completely captured in a single figure, presented as a function of channel geometry at each order in the perturbation. Asymptotic solutions for channel heights large compared with the ridge period are compared with numerical solutions of the dual series equations. The asymptotic slip length expressions are shown to consist of only two terms, with all other terms exponentially small. As a result, these expressions are accurate even for heights as low as half the ridge period, and hence are useful for engineering applications.


Author(s):  
Ivan Otic

Abstract One important issue in understanding and modeling of turbulent heat transfer is the behavior of fluctuating temperature close to the wall. Common engineering computational approach assumes constant heat flux boundary condition on heated walls. In the present paper constant heat flux boundary condition was assumed and effects of temperature fluctuations are investigated using large eddy simulations (LES) approach. A series of large eddy simulations for two geometries is performed: First, forced convection in channels and second, forced convection over a backward facing step. LES simulation data is statistically analyzed and compared with results of direct numerical simulations (DNS) from the literature which apply three cases of heat flux boundary conditions: 1. ideal heat flux boundary condition, 2. non-ideal heat flux boundary condition, 3. conjugate heat transfer boundary condition. For low Prandtl number flows LES results show that, despite very good agreement for velocities and mean temperature, predictions of temperature fluctuations may have strong deficiencies if simplified boundary conditions are applied.


2020 ◽  
Vol 307 ◽  
pp. 01038
Author(s):  
Mohammed Zohud ◽  
Ahmed Ouadha ◽  
Redouane Benzeguir

The present paper aims to numerically investigate the flow, heat transfer and entropy generation of some hydrocarbon based nanorefrigerants flowing in a circular tube subject to constant heat flux boundary condition. Numerical tests have been performed for 4 types of nanoparticles, namely Al2O3, CuO, SiO2, and ZnO with a diameter equal to 30 nm and a volume concentration of φ = 5%. These nanoparticles are dispersed in some hydrocarbon-based refrigerants, namely tetrafluoroethane (R134a), propane (R290), butane (R600), isobutane (R600a) and propylene (R1270). Computations have been performed for Reynolds number ranging from 600 to 2200. The numerical results in terms of the average heat transfer coefficient of pure refrigerants have been compared to values obtained using correlations from the literature. The results show that the increase of the Reynolds number increases the heat transfer coefficient and decreases the total entropy generation.


1976 ◽  
Vol 98 (3) ◽  
pp. 459-465 ◽  
Author(s):  
S. W. Hong ◽  
A. E. Bergles

A boundary layer solution is presented for fully developed laminar flow in a horizontal circular tube, assuming large Prandtl number and temperature-dependent viscosity and density. The solution is given by Nu = C1 Ra1/4, where C1 is a function of a nondimensional viscosity parameter and the heat flux boundary condition. The heat transfer predictions for large values of the viscosity parameter are 50 percent above the constant viscosity predictions. The present analysis is in good agreement with experimental data for water and ethylene glycol flowing in electrically heated tubes which approximate the boundary conditions assumed in the analysis.


Author(s):  
David B. Helmer ◽  
Florian Hoefler

A steady-state IR measurement is described and demonstrated for a leading edge crossover impingement configuration. Thin-walled leading edge models are used, with a constant heat flux boundary condition generated. This approach allows for rapid and low-cost hardware manufacture while simultaneously providing improved measurement quality. Test time is heavily reduced relative to traditional liquid crystal tests, and data processing is substantially simplified from transient methodologies. The thin walls minimize the impact of lateral conduction and simplify the conduction corrections. The methodology is demonstrated on a test for a blade-relevant leading edge impingement geometry, with a detailed uncertainty analysis provided.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Mandana S. Saravani ◽  
Ryoichi S. Amano ◽  
Nicholas J. DiPasquale ◽  
Joseph Wayne Halmo

Abstract The present work investigates the effects of various guide vane designs on the heat transfer enhancement of rotating U-duct configuration with parallel 45-deg ribs. The ribs were installed on the bottom wall of the channel, which has a constant heat flux boundary condition. The channel has a square cross section with a 5.08 cm hydraulic diameter. The first and second passes are 514 mm and 460 mm, respectively. The range of Reynolds number for turbulent flow is up to 35,000. The channel rotates at various speeds up to 600 rpm, which brings the maximum rotation number of 0.75. Several computational fluid dynamics simulations are carried out for this study to understand the effect of guide vanes on flow and heat transfer in serpentine channels under various operating conditions.


Sign in / Sign up

Export Citation Format

Share Document