Experimental and Numerical Simulation Study of Simultaneous Toothing of Spur Gears by Press-Rolling Process

Author(s):  
Liviu Nistor ◽  
Adriana Neag ◽  
Ionut Marian ◽  
Dan Frunza

In this paper, the cold simultaneous toothing of spur gears has been investigated. This method can be described as a press-rolling process. The influence of gear geometry such as teeth number and the deformation mechanism was investigated by 3D finite-element analysis using forge® software in terms of teeth forming and forming loads evolution. Based on these simulations, the experimental investigations were carried out to obtain a spur gear form with the good quality, using several billet dimensions. The experimental trials and simulations conducted for the spur gear (z = 23 teeth and m = 1.5 mm) showed premises to continuous flow lines formation at the base of the teeth. The maximum pressing force results from the numerical simulation agree with the experimental maximum force recorded.

1982 ◽  
Vol 104 (4) ◽  
pp. 759-764 ◽  
Author(s):  
J. J. Coy ◽  
C. Hu-Chih Chao

A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classic Hertzian solution for deflection. Many previous finite element studies of gear tooth deflection have not included the full effect of the Hertzian deflection. The present results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.


2013 ◽  
Vol 633 ◽  
pp. 87-102 ◽  
Author(s):  
Ivana Atanasovska ◽  
Radivoje Mitrovic ◽  
Dejan Momcilovic

The gear tooth profile has an immense effect on the main operating parameters of gear pairs (load capacity, working life, efficiency, vibrations, etc). In current engineering research and practice, there is a strong need to develop methods for tooth profile optimization. In this paper a new method for selecting the optimal tooth profile parameters of spur gears is described. This method has been named the Explicit Parametric Method (EPM). The addendum modification coefficient, radius of root curvature, and pressure angle of the basic rack for cylindrical gears, have been identified as the main tooth profile parameters of spur gears. Therefore, the EPM selects the optimal values for these three tooth profile parameters. Special attention has been paid to develop a method of adjustment for the particular working conditions and explicit optimization requirements. The EPM for optimal tooth profile parameters of gears uses contact nonlinear Finite Element Analysis (FEA) for calculation of deformations and stresses of gear pairs, in addition to explicit comparative diagrams for optimal tooth profile parameter selection.


2011 ◽  
Vol 704-705 ◽  
pp. 155-159 ◽  
Author(s):  
Jun Hong Li ◽  
Hui Yu

The stretch reducing process is the last hot deformation process of the hot-rolled seamless steel tube’s production. Its role is to decrease the tube’s diameter under the large tension and expand the range of product specifications. But the stretch reducing process often results in wall thickness tolerance at the head and end of the tube. In order to solve the problem, a 3D elastic-plastic finite element analysis model was established to simulate the stretch reducing process of φ159 unit. Based on this, the tube’s wall thickness distribution was studied and the parameters of sharpen rolling process was put forward. Numerical simulation results indicate that with the parameters of sharpen rolling process, the length of wall thickness tolerance was shorten and the rate of finished products was proved.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
Lin Zhu ◽  
Tien-Chien Jen ◽  
Xiao-Ling Kong

In this paper, the influences of low heat transfer condition at the outer walls on the microcombustor are investigated due to the fact that a sufficiently small heat transfer coefficient at the outer wall incurs the upstream burning in the recirculation jacket, results in the high wall temperature, and hence possibly damages the microcombustor. Numerical simulation approaches focused on the microcombustor with the flame burning in the recirculation jacket. Combustion characteristics of the combustor were first analyzed based on 2D computational fluid dynamics (CFD), and then the most dangerous locations on the combustor were predicted by means of the 3D finite element analysis method. The study demonstrates the effectiveness of CFD and stress modeling for the design and improvement of the microcombustors.


2009 ◽  
Vol 417-418 ◽  
pp. 725-728 ◽  
Author(s):  
Nicolae Faur ◽  
Cristina Bortun ◽  
Liviu Marsavina ◽  
Anghel Cernescu ◽  
Otilia Gombosi

The complete dentures are realized by different acrylic resins and different technologies. These materials are fragile and frequently appear crack and fractures of these dentures. Also, theses materials as well as the technologies of performing these dentures are expensive. In order to avoid the ultimate failure of the complete dentures, for each case there is necessary a numerical simulation as a preliminary stage before the effective performance of the denture. In order to realize the numerical simulation of the complete denture there is necessary to know the mechanical and elastic properties of the acrylic resins. This paper presents the results of experimental investigations performed in order to determine the mechanical and elastic properties of complete denture materials. A 3D laser scanner was used for the elaboration of the geometrical model of the complete dentures. In this way, using the reverse engineering technology there was realized a very accurate geometrical model. Finite element analysis was used to estimate the durability of the same complete dentures. The calculation model was finally validated by a fatigue experimental test.


2021 ◽  
Vol 31 (2) ◽  
pp. 36-49
Author(s):  
Lauro Miguel Lima Rocha ◽  
Marco Túlio Santana Alves

This paper deals with analyzing the structural influence of mass reliefs in spur gears. For this purpose, a system composed of pinion and a gear was designed, such that for gear several geometries were designed with different reliefs shapes and soul thicknesses. From the proposed geometries, finite element analysis (FEA) was performed, and the tooth stresses of each model were compared with the solid gear. From the results, it was observed that the tooth stresses are reduced in some cases. Besides, from the aforementioned cases, it is possible to observe that the maximum stresses may take place in its core instead of the teeth (rim area). On the other hand, based on other cases, the core thickness plays an important role as a criterion that defines the local stress.


2013 ◽  
Vol 470 ◽  
pp. 197-204 ◽  
Author(s):  
Xian Kang Wang ◽  
Jin Duo Ye ◽  
Xu Ma ◽  
Qian Qian Tian ◽  
Xue Li ◽  
...  

The numerical simulation of the Y-type three-roller two stands cold rolling stainless steel/carbon steel double metal composite seamless steel tube process was conducted through the finite element analysis of the elastic-plastic by applying the MSC.MARC software. Based on the numerical simulation, the character of stress and strain distribution parameters during the Y-type three-roller two stands cold rolling were obtained by the finite element analysis, and acquired the section pass deformation figure. The distribution of the axial stress, circle stress and radial stress were drawn below the Y-type mill along the circle. The mechanism of the tube cold rolling process and the effect of the forming steel tube both the diameter and wall thickness accuracy were explained according to the stress distribution. The results of the research can be applied to the design of the technical parameters in the forming process.


Author(s):  
Mohamdi Djemoui ◽  
Outtas Toufik

Knowing the stresses and pressures in the contact between two deformable solids is fundamental in order to optimize the strength and the lifetime of mechanical components such as bearings or gears. These constraints can be determined by the calculation (finite element method or Hertz theory) or by experimental methods such as photoelasticity. The objective of this study is to model and compute the stress field and contact pressure using 3D finite element software. The validation of obtained results is done by comparison with the classical results of the non linear Hertz theory between two deformable cylinders. An application to spur gears with a circle involute profile is done and also validate with the same Hertz theory.


2010 ◽  
Vol 148-149 ◽  
pp. 854-858
Author(s):  
Shu Bo Xu ◽  
Cai Nian Jing ◽  
Ke Ke Sun ◽  
Guo Cheng Ren ◽  
Gui Qing Wang

Recent years have therefore seen growing interest in gear precision forging to net-shape form of forge bevel, spur and helical gears, as an alternative to conventional manufacturing. In this paper, gear precision forging processes are simulated by using metal forming finite element code DEFORM-3D. The investigations of gear precision forging processes are conducted with perform forging and final forging processes. The processes of completely closed-die forging, moving-die forging and central divided flow forging processes are investigated for spur gears. The effect of different processes on the distribution of effective stress in the workpieces and forging loads are given. The purpose of this study is to introduce a new method, a so-called floating-relief method which applied to the forging of spur gears. It indicated that the flowing properties of the gear billet have a higher improve than that of conventional forging process. And the forging load obtained by using this new precision forging technology is decline sharply. The floating-relief method for gear precision forging is a sound process in the practical application.


Sign in / Sign up

Export Citation Format

Share Document