Flaw Tolerance Assessment for Low-Cycle Fatigue of Stainless Steel

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Masayuki Kamaya

According to Appendix L of the Boiler and Pressure Vessel Code Section XI, flaw tolerance assessment is performed using the stress intensity factor (SIF) even for low-cycle fatigue. On the other hand, in Section III, the fatigue damage is assessed using the design fatigue curve (DFC), which has been determined from strain-based fatigue tests. Namely, the stress is used for the flaw tolerance assessment. In order to resolve this inconsistency, in the present study, the strain intensity factor was used for crack growth prediction. First, it was shown that the strain range was the key parameter for predicting the fatigue life and crack growth. The crack growth rates correlated well with the strain intensity factor even for the low-cycle fatigue. Then, the strain intensity factor was applied to predict the crack growth under uniform and thermal cyclic loading conditions. The estimated fatigue life for the uniform cyclic loading condition agreed well with that obtained by the low-cycle fatigue tests, while the fatigue life estimated for the cyclic thermal loading condition was longer. It was shown that the inspection result of “no crack” can be reflected to determining the future inspection time by applying the flaw tolerance analysis. It was concluded that the flaw tolerance concept is applicable not only to the plant maintenance but also to plant design. The fatigue damage assessment using the design fatigue curve can be replaced with the crack growth prediction.

Author(s):  
Masayuki Kamaya

According to Appendix L of the BPVC Section XI, flaw tolerance assessment is performed using the stress intensity factor even for low-cycle fatigue. On the other hand, in Section III, the fatigue damage is assessed using the design fatigue curve, which has been determined from strain-based fatigue tests. Namely, the stress is used for the flaw tolerance assessment, whereas the strain (Ke factor) is quoted for the design. In order to resolve this inconsistency, in the present study, the strain intensity factor was used for crack growth prediction. First, it was shown that the strain range was the key parameter for predicting the fatigue life and crack growth. The crack growth rates correlated well with the strain intensity factor even for the low-cycle fatigue. Then, the strain intensity factor was applied to predict the crack growth under uniform and thermal cyclic loading conditions. The estimated fatigue life for the uniform cyclic loading condition agreed well with that obtained by the low-cycle fatigue tests, while the fatigue life estimated for the cyclic thermal loading condition was longer. It was shown that the inspection result of “no crack” can be reflected to determining the future inspection time by applying the flaw tolerance analysis. It was concluded that the flaw tolerance concept is applicable not only to the plant maintenance but also to plant design. The fatigue damage assessment using the design fatigue curve can be replaced with the crack growth prediction.


Author(s):  
Yuichi Fukuta ◽  
Yuichiro Nomura ◽  
Seiji Asada

NUREG/CR-6909 of USA and JSME of Japan proposed new rules for evaluating environmental effects in fatigue analyses of reactors components. These rules were established from a lot of fatigue data with polished specimens under simple loading condition. The effects of surface finish or complex loading condition were reported in some papers, but these data were obtained with the simple shaped specimens. In order to evaluate the effects of surface finish and loading condition and to confirm the applicability of the proposed rules to actual components, Low Cycle Fatigue tests are performed in PWR environment with the specimens cut from 316 austenitic stainless steel welded piping. The pipes are machined to have three levels of surface finish condition and the load pattern simulating the thermal stress is applied to specimens. In this study, the effect of surface finish on fatigue life is included to be small for 316 austenitic stainless steel welded piping. Considering the insensitive region in the current evaluation rule, predicted accuracy is increased and possibility of improving the current rule is indicated.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6741
Author(s):  
Grzegorz Junak ◽  
Anżelina Marek ◽  
Michał Paduchowicz

This paper presents the results of tests conducted on the HR6W (23Cr-45Ni-6W-Nb-Ti-B) alloy under low-cycle fatigue at room temperature and at 650 °C. Fatigue tests were carried out at constant values of the total strain ranges. The alloy under low-cycle fatigue showed cyclic strengthening both at room temperature and at 650 °C. The degree of HR6W strengthening described by coefficient n’ was higher at higher temperatures. At the same time, its fatigue life Nf at room temperature was, depending on the range of total strain adopted in the tests, several times higher than observed at 650 °C.


2021 ◽  
Vol 1035 ◽  
pp. 292-296
Author(s):  
Zi Chao Peng ◽  
Jun Ying Sheng ◽  
Xu Qing Wang ◽  
Yue Tang

Low cycle fatigue (LCF) properties of a powder metallurgy(PM) nickel base superalloy FGH720Li were systematically studied in this work, including smooth LCF and notched LCF tested at various temperatures and different stress. The relationship between the fatigue life and applied stress was analyzed both for smooth fatigue and notch fatigue tests. The effects of loading frequency and stress ratio on LCF behavior were also studied. As an important influencing factor of the fatigue life in powder metallurgy superalloy, the effect of inclusions on LCF life was also investigated. The results showed that the fatigue properties of FGH720Li alloy was excellent, when tested at the temperature of 450°C and applied stress of 1230MPa, the fatigue life could exceed 5×104 cycles. When tested at 650°C and 1150MPa, the average fatigue life was still beyond 2×105 cycles.


2016 ◽  
Vol 697 ◽  
pp. 652-657
Author(s):  
Rong Guo Zhao ◽  
Yi Yan ◽  
Yong Zhou Jiang ◽  
Xi Yan Luo ◽  
Qi Bang Li ◽  
...  

At room temperature, the low cycle fatigue tests for smooth specimens of TC25 titanium alloy under various stress ranges are operated at a CSS280I-20w Electro Hydraulic Servo Universal Testing Machine with a microscopic observation system, and the low cycle fatigue lifetimes are measured. Based upon the analysis of stress-strain hysteresis loop of low cycle fatigue of TC25 titanium alloy, a simplified Manson-Coffin formula is derived according to both the experimental characteristics and the stress-strain constitutive model, the fatigue lifetimes are plotted against stress ranges, and a stress-fatigue life curve for TC25 titanium alloy is obtained by the linear regression analysis method. Finally, the fracture surface morphologies of TC25 specimens are investigated using a JSM-6360 Scanning Electron Microscopy, and the fatigue fracture mechanisms of low cycle fatigue are studied. It shows that the plastic deformations are mainly formed at the accelerated fracture stage, and various shear lips can be observed on the fracture surfaces, which demonstrates that the shear stress results in the final rupture of TC25 titanium alloy. During the fracture of low cycle fatigue, the cleavage nucleation leads to the formation of fatigue crack initiation region, the fatigue crack growth exhibits a mixed transgranular and intergranular crack growth mode, and in the final rupture region, the fracture surface of low cycle fatigue of TC25 titanium alloy appears as a typical semi-brittle fracture mode.


Author(s):  
J. Hou ◽  
J. Dubke ◽  
K. Barlow ◽  
S. Slater ◽  
L. Harris ◽  
...  

Following a reanalysis of the original material data plus supplementary Low Cycle Fatigue (LCF) specimen testing, an Original Equipment Manufacturer (OEM) reduced the low cycle fatigue life limits for a number of turbine components. To ascertain the validity of the new life limits, an international collaborative spin rig test program was initiated to provide more accurate low cycle fatigue life limits. The program covered a broad range of activities including, Finite Element (FE) stress analyses, cyclic spin rig testing, fractographic assessment and fatigue crack growth (FCG) analyses. This paper describes the 2D and 3D crack growth analyses of critical turbine components in a turboprop gas turbine engine, comparison of predicted results obtained using different software and also correlations with spin test results from the program. First, FE stress analyses of selected turbine components were carried out under both engine operating conditions and spin-rig test configurations in order to determine the maximum and minimum operating speeds required to match the stress ranges at the critical location specified by the OEM under engine operating conditions. Second, 2D and 3D crack growth analyses were performed independently by three organisations for a disk bolthole using the state-of-the-art software. Third, the predictions from different software were compared, and the relative technical merits of each software were evaluated. Finally, the predicted results were correlated against the striation counts determined by the OEM from the results of spin rig tests.


2006 ◽  
Vol 326-328 ◽  
pp. 1011-1014 ◽  
Author(s):  
Ill Seok Jeong ◽  
Sang Jai Kim ◽  
Taek Ho Song ◽  
Sung Yull Hong

For developing fatigue design curve of cast stainless steel that is used in piping material of nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical solid fatigue specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with other previous results.


Sign in / Sign up

Export Citation Format

Share Document