Micromechanical Finite Element Analysis of the Effects of Martensite Particle Size and Ferrite Grain Boundaries on the Overall Mechanical Behavior of Dual Phase Steel

Author(s):  
Najmul H. Abid ◽  
Rashid K. Abu Al-Rub ◽  
Anthony N. Palazotto

This paper focuses on micromechanical finite element (FE) modeling of the effects of size and morphology (particularly elongation or aspect ratio (AR) along the loading direction) of martensite particles and the ferrite grains on the overall mechanical behavior of dual-phase (DP) steels. To capture the size-effect of the martensite particles and ferrite grains, the core and mantle approach is adapted in which a thin interphase of geometrically necessary dislocations (GNDs) is embedded at the martensite–ferrite boundaries. It is shown that as the martensite particles size decreases or their aspect ratio increases, both the strength and ductility of DP steel increase simultaneously. On the other hand, as the ferrite grain size decreases or its aspect ratio increases, the overall strength increases on the expense of the ductility. The conclusions from this study can be used in guiding the microstructural design of DP steels.

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1068
Author(s):  
Hany S. Abdo ◽  
Asiful H. Seikh ◽  
Biplab Baran Mandal ◽  
Jabair A. Mohammed ◽  
Sameh A. Ragab ◽  
...  

Dual-phase (DP) steels consist of a ferritic matrix dispersed with some percentage of martensite, which gives the material a good combination of strength and ductility, along with the capacity to absorb energy and enhanced corrosion protection properties. The purpose of this work was to study the microstructural and corrosion behavior (mainly pitting and galvanic corrosion) of DP steel compared with that of conventional rebar. To obtain DP steel, low-carbon steels were heat-treated at 950 °C for 1 h and then intercritically annealed at 771 °C for 75 min, followed by quenching in ice-brine water. The corrosion rates of DP steel and standard rebar were then measured in different pore solutions. Macro- and microhardness tests were performed for both steels. It was found that DP steels exhibited a superior corrosion resistance and strength compared to standard rebar. The reported results show that DP steels are a good candidate for concrete reinforcement, especially in aggressive and corrosive environments.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 555-567
Author(s):  
Michael Weigelt ◽  
Cornelius Thoma ◽  
Erdong Zheng ◽  
Joerg Franke

AbstractNumerous applications of daily life use flat coils, e.g. in the automotive area, in solar technology and in modern kitchens. One common property that all these applications share, is a flat coil made of high-frequency (HF) litz wires. The coil layout and the properties of the HF litz wire influence the winding process and the efficiency of the application. As a result, the HF litz wire must meet the complex technical requirements of the winding process and of the preferred mechanical, electromagnetic and thermal properties of the HF litz wire itself. Therefore, a reasonable configuration and optimization of HF litz wire has been developed with the help of a finite-element-analysis (FEA). In this work, it is first shown that the mechanical behavior of HF litz wire under tensile and bending stress can be simulated. Since the computational effort for modelling an HF litz wire at the single conductor level is hardly manageable, a suitable modelling strategy is developed and applied using geometric analogous models (GAM). By using such a model, HF litz wires can be designed for the specific application and their behavior in a winding process can be predicted.


Sign in / Sign up

Export Citation Format

Share Document