dp steels
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 1)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Farzad Badkoobeh ◽  
Hossein Mostaan ◽  
Mahdi Rafiei ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Filippo Berto

Ferritic–martensitic dual-phase (DP) steels are prominent and advanced high-strength steels (AHSS) broadly employed in automotive industries. Hence, extensive study is conducted regarding the relationship between the microstructure and mechanical properties of DP steels due to the high importance of DP steels in these industries. In this respect, this paper was aimed at reviewing the microstructural characteristics and strengthening mechanisms of DP steels. This review article represents that the main microstructural characteristics of DP steels include the ferrite grain size (FGS), martensite volume fraction (MVF), and martensite morphology (MM), which play a key role in the strengthening mechanisms and mechanical properties. In other words, these can act as strengthening factors, which were separately considered in this paper. Thus, the properties of DP steels are intensely governed by focusing on these characteristics (i.e., FGS, MVF, and MM). This review article addressed the improvement techniques of strengthening mechanisms and the effects of hardening factors on mechanical properties. The relevant techniques were also made up of several processing routes, e.g., thermal cycling, cold rolling, hot rolling, etc., that could make a great strength–ductility balance. Lastly, this review paper could provide substantial assistance to researchers and automotive engineers for DP steel manufacturing with excellent properties. Hence, researchers and automotive engineers are also able to design automobiles using DP steels that possess the lowest fuel consumption and prevent accidents that result from premature mechanical failures.



Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4970
Author(s):  
Jacqueline Noder ◽  
Jon Edward Gutierrez ◽  
Amir Zhumagulov ◽  
James Dykeman ◽  
Hesham Ezzat ◽  
...  

While the third generation of advanced high-strength steels (3rd Gen AHSS) have increasingly gained attention for automotive lightweighting, it remains unclear to what extent the developed methodologies for the conventional dual-phase (DP) steels are applicable to this new class of steels. The present paper provides a comprehensive study on the constitutive, formability, tribology, and fracture behavior of three commercial 3rd Gen AHSS with an ultimate strength level ranging from 980 to 1180 MPa which are contrasted with two DP steels of the same strength levels and the 590R AHSS. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then evaluated in 3D simulations of tensile tests. In general, the strain rate sensitivity of the two 3rd Gen 1180 AHSS was significantly different as one grade exhibited larger transformation-induced behavior. The in-plane formability of the three 1180 MPa steels was similar but with a stark contrast in the local formability whereas the opposite trend was observed for the 3rd Gen 980 and the DP980 steel. The forming limit curves could be accurately predicted using the experimentally measured hardening behavior and the deterministic modified Bressan–Williams through-thickness shear model or the linearized Modified Maximum Force Criterion. The resistance to sliding of the three 3rd Gen AHSS in the Twist Compression Test revealed a comparable coefficient of friction to the 590R except for the electro-galvanized 3rd Gen 1180 V1. An efficient experimental approach to fracture characterization for AHSS was developed that exploits tool contact and bending to obtain fracture strains on the surface of the specimen by suppressing necking. Miniature conical hole expansion, biaxial punch tests, and the VDA 238-100 bend test were performed to construct stress-state dependent fracture loci for use in forming and crash simulations. It is demonstrated that, the 3rd Gen 1180 V2 can potentially replace the DP980 steel in terms of both the global and local formability.



Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 782
Author(s):  
Dwaipayan Mallick ◽  
Nicolas Mary ◽  
V. S. Raja ◽  
Bernard Normand

This study deals with microstructural influence on the H permeation behavior of Dual-Phase (DP) and Complex Phase (CP) steels using electrochemical permeation studies. The H diffusion coefficients in DP steels (DP800: 1.65 × 10−10 m2·s−1, DP1000: 1.58 × 10−10 m2·s−1) are half of that found in CP steels (3.07 × 10−10 m2·s−1).The banded microstructure along the specimen thickness and higher C content of the DP led to high H diffusivity of DP steels. The lower total H concentration along with a higher fraction of H was present in the stronger traps in CP steels suggest a better HE resistance of this steel. The H distribution in the specimens was non-uniform, with a higher H concentration speculated near the charging surface.



2021 ◽  
Vol 1016 ◽  
pp. 534-540
Author(s):  
Mohamed Imad Eddine Heddar ◽  
Nadjoua Matougui ◽  
Brahim Mehdi

In this study, a random field (RF) model with a Gaussian kernel was applied to generate an artificial microstructure of dual phase (DP) steels. Micrographs obtained from Scanning Electron Microscopy (SEM) were analyzed using image processing software to extract the grain size and the volume fraction of each phase. Based on watershed (Ws) segmentation and quantitative analysis, the real and artificial microstructures were compared by analyzing grain features related the solidity, grain size and aspect ratio (the proportional relationship between its width and its height). Consequently, this approach allows to simulate the overall stress-strain behavior of the analyzed microstructures. As a result, it was shown that the strain localization starts to develop at the ferrite/martensite interface and that the RF model could replicate the micromechanical behavior of DP steels.



2021 ◽  
Author(s):  
Futao Dong ◽  
Jeffrey Venezuela ◽  
Huixing Li ◽  
Zhiming Shi ◽  
Qingjun Zhou ◽  
...  


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Yousef Mazaheri ◽  
Amir Hossein Jahanara ◽  
Mohsen Sheikhi ◽  
Ehsan Ghassemali

The ferrite-pearlite microstructure was cold-rolled to form dual phase (DP) steels, the percentage reduction of which varied. To do so, the steels were annealed in two steps and then the workpiece underwent water quenching. Accordingly, a decrease was observed in the average size of the ferrite grains, from above 15 µm to below 2 µm, subsequent to the thermomechanical processing. By an increase in the reduction percentage, the volume fraction of martensite grew. The balance between strength and elongation also improved nearly 3 times, equivalent to approximately 37,297 MPa% in DP in comparison to 11,501 MPa% in the ferrite-pearlite microstructure, even after 50% cold-rolling. Based on Hollomon and differential Crussard-Jaoul (DC–J) analyses, the DP steels under investigation deformed in two and three stages, respectively. The modified C–J (MC–J) analysis, however, revealed that the deformation process took place in four stages. The rate of strain hardening at the onset of the deformation process was rather high in all DP steels. The given rate increased once the size of the ferrite grains reduced; an increase in the volume fraction of martensite due to larger percentage of reduction also contributed to the higher rate of strain hardening. The observation of the fractured surfaces of the tensile specimens indicated ductile fracture of the studied DP steels.



2020 ◽  
Vol 7 ◽  
Author(s):  
Zhen Wang ◽  
Jing Liu ◽  
Feng Huang ◽  
Yun-jie Bi ◽  
Shi-qi Zhang

The hydrogen diffusion behavior and hydrogen embrittlement susceptibility of dual phase (DP) steels with different martensite content were investigated using the slow strain-rate tensile test and hydrogen permeation measurement. Results showed that a logarithmic relationship was established between the hydrogen embrittlement index (IHE) and the effective hydrogen diffusion coefficient (Deff). When the martensite content is low, ferrite/martensite interface behaves as the main trap that captures the hydrogen atoms. Also, when the Deff decreases, IHE increases with increasing martensite content. However, when the martensite content reaches approximately 68.3%, the martensite grains start to form a continuous network, Deff reaches a plateau and IHE continues to increase. This is mainly related to the reduction of carbon content in martensite and the length of ferrite/martensite interface, which promotes the diffusion of hydrogen atoms in martensite and the aggregation of hydrogen atoms at the ferrite/martensite interface. Finally, a model describing the mechanism of microstructure-driven hydrogen diffusion with different martensite distribution was established.



Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1068
Author(s):  
Hany S. Abdo ◽  
Asiful H. Seikh ◽  
Biplab Baran Mandal ◽  
Jabair A. Mohammed ◽  
Sameh A. Ragab ◽  
...  

Dual-phase (DP) steels consist of a ferritic matrix dispersed with some percentage of martensite, which gives the material a good combination of strength and ductility, along with the capacity to absorb energy and enhanced corrosion protection properties. The purpose of this work was to study the microstructural and corrosion behavior (mainly pitting and galvanic corrosion) of DP steel compared with that of conventional rebar. To obtain DP steel, low-carbon steels were heat-treated at 950 °C for 1 h and then intercritically annealed at 771 °C for 75 min, followed by quenching in ice-brine water. The corrosion rates of DP steel and standard rebar were then measured in different pore solutions. Macro- and microhardness tests were performed for both steels. It was found that DP steels exhibited a superior corrosion resistance and strength compared to standard rebar. The reported results show that DP steels are a good candidate for concrete reinforcement, especially in aggressive and corrosive environments.



Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1022
Author(s):  
Jae Hyung Kim ◽  
Taekyung Lee ◽  
Chong Soo Lee

This work investigated the microstructural effect on stretch flangeability of ferrite–martensite dual-phase (DP) steels. Three types of DP steels with various martensitic structures were prepared for the research: fibrous martensite in water-quenched (WQ) sample, chained martensite in air-quenched (AQ) sample, and coarse martensite in step-quenched (SQ) sample. The WQ specimen exhibited the highest mechanical strength and hole expansion ratio compared to the AQ and SQ samples despite their similar fraction of martensite. Such a result was explained in view of uniform distribution of fine martensite and high density of geometrically necessary dislocations in the WQ specimen. Meanwhile, most cracks initiated at either rolling or transverse direction during the stretch flangeability test regardless of the martensitic morphology. It was attributed to the highest average normal anisotropy in the direction of 45° to rolling direction.



Author(s):  
Xueyun Gao ◽  
Haiyan Wang ◽  
Lei Xing ◽  
Cainv Ma ◽  
Yiming Li ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document