Experimental Study on Contact Force in a Slewing Bearing

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Guanci Chen ◽  
Ge Wen ◽  
Zhengming Xiao ◽  
Hongjun San

Measuring and verification of contact force in a rolling element bearing is a big problem. In this study, a new measuring method for contact force in a large-scale ball bearing is developed. The idea is to measure the deformation under the ball–race contact by displacement sensor at first, and the displacement of the end face of load bearing ring is also measured to determine the contact angle of ball–race contact. Then, the corresponding theory is developed to calculate the contact angle of ball–race contact by the displacement of the end face of load bearing ring. At last, the ball–race contact force is determined by accurately calculating through finite element method (FEM). Results show that the relation between contact force and deformation of measuring surface which is under ball–race contact is linear. The position of ball greatly affects the contact angle of ball–race contact. The contact angle of the ball which is near the arm of force is larger than that of the ball which is far from the arm of force. On the contrary, the measuring deformation of ball–race contact that is near the arm of force is less than that of ball–race contact that is far from the arm of force. The method developed here is only suitable for large-scale rolling element bearing because of the size constraint of the sensor.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
L. Houpert

Analytical relationships for calculating three rolling element bearing loads (Fx, Fy, and Fz) and two tilting moments (My and Mz) as a function of three relative race translations (dx, dy, and dz) and two relative race tilting angles (dθy and dθz) have been given in a previous paper. The previous approach was suggested for any rolling element bearing type, although it has been recognized that the assumption of a constant rolling element-race contact angle is not well supported by deep groove ball bearings (DGBB) or angular contact ball bearings (ACBB). The new approach described in this paper addresses the latter weaknesses by accounting for the variation of the contact angle on the most loaded ball and also shows that misalignment effects on spherical roller bearing (SRB) loads are negligible. Comparisons between the simplified approach (option 1) and the “enhanced” numerical approach (option 2, which requires a summation of the load components on each ball with the appropriate contact angle included) is made, showing a good correlation as long as the relative misalignment remains reasonable or occurs in the plane corresponding to maximum radial displacement. Option 2 can, however, be recommended since it is easy to program and quite accurate at any misalignment level. Other pros and cons of both options are described. As in the previous paper, a full coupling between all displacements and forces, as well as roller and raceway crown radii, are considered, meaning that Hertzian point contact stiffness is used in roller bearings at low load with a smooth transition toward Hertzian line contact as the load increases. This approach is particularly recommended for programming the rolling element bearing behavior in any finite element analysis or multibody system dynamic tool, since only two nodes are considered: one for the inner race (IR) center, usually connected to a shaft, and another node for the outer race (OR) center, connected to the housing.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
L. Houpert

An enhanced analytical approach is suggested for calculating three rolling element bearing loads Fx, Fy, and Fz as well as the two tilting moments My and Mz as a function of five relative race displacements: three translations dx, dy, and dz, and two tilting angles dθy and dθz. A full coupling between all these displacements and forces is considered. This approach is particularly recommended for programming the rolling element bearing behavior in any finite element analysis or multibody system dynamic tool, since only two nodes are considered: one for the inner race center, usually connected to a shaft, and another node for the outer race center, connected to the housing. Also, roller and raceway crown radii are considered, meaning that Hertzian point contacts stiffness can be used at low load with a smooth transition toward Hertzian line contact as the load increases. This approach can be used for describing any rolling element bearing type when neglecting centrifugal and gyroscopic effects and applying the approximation of a constant ball–race contact angle. Deep groove ball bearings (whose contact angle sign follows the sign of the applied bearing axial force) or other ball bearings or spherical roller bearing operating under large misalignment may not support such approximations.


Author(s):  
Wenbing Tu ◽  
Jinwen Yang ◽  
Wennian Yu ◽  
Ya Luo

The vibration response of rolling element bearing has a close relation with its fault. An accurate evaluation of the bearing vibration response is essential to the bearing fault diagnosis. At present, most bearing dynamics models are built based on rigid assumptions, which may not faithfully reveal the dynamic characteristics of bearing in the presence of fault. Moreover, previous similar works mainly focus on the fault with a specified size without considering the varying contact characteristics as the fault evolves. This paper developed an explicit dynamics finite element model for the bearing with three types of raceway faults considering the flexibility of each bearing component in order to accurately study the contact characteristic and vibration mechanism of defective bearings in the process of fault evolution. The developed model is validated by comparing its simulation results with both analytical and experimental results. The dynamic contact patterns between the rolling elements and the fault, the additional displacement due to the fault and the faulty characteristics within the bearing vibration signal during the fault evolution process are investigated. The analysis results from this work can provide practitioners an in-depth understanding towards the internal contact characteristics with the existence of raceway fault and theoretical basis for rolling bearing fault diagnosis.


2014 ◽  
Vol 889-890 ◽  
pp. 666-670
Author(s):  
Zong Tao Li ◽  
Yan Gao ◽  
Xiang Zhou ◽  
Yu Guo

The cepstrum edit scheme for the vibration feature extraction of the faulty rolling element bearing (REB) is studied in this paper. By combined the time synchronous average (TSA) and the real cepstrum to localize and edit the cepstral lines of the original vibration, the unwanted discrete frequency components can be removed. Then, a corresponding inverse procedure is designed, in which the edited cepstrum and the original phase spectrum are employed to reconstruct the edited vibration for the REB feature extraction. Simulation verified the scheme positively.


Sign in / Sign up

Export Citation Format

Share Document