An Enhanced Study of the Load–Displacement Relationships for Rolling Element Bearings

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
L. Houpert

An enhanced analytical approach is suggested for calculating three rolling element bearing loads Fx, Fy, and Fz as well as the two tilting moments My and Mz as a function of five relative race displacements: three translations dx, dy, and dz, and two tilting angles dθy and dθz. A full coupling between all these displacements and forces is considered. This approach is particularly recommended for programming the rolling element bearing behavior in any finite element analysis or multibody system dynamic tool, since only two nodes are considered: one for the inner race center, usually connected to a shaft, and another node for the outer race center, connected to the housing. Also, roller and raceway crown radii are considered, meaning that Hertzian point contacts stiffness can be used at low load with a smooth transition toward Hertzian line contact as the load increases. This approach can be used for describing any rolling element bearing type when neglecting centrifugal and gyroscopic effects and applying the approximation of a constant ball–race contact angle. Deep groove ball bearings (whose contact angle sign follows the sign of the applied bearing axial force) or other ball bearings or spherical roller bearing operating under large misalignment may not support such approximations.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
L. Houpert

Analytical relationships for calculating three rolling element bearing loads (Fx, Fy, and Fz) and two tilting moments (My and Mz) as a function of three relative race translations (dx, dy, and dz) and two relative race tilting angles (dθy and dθz) have been given in a previous paper. The previous approach was suggested for any rolling element bearing type, although it has been recognized that the assumption of a constant rolling element-race contact angle is not well supported by deep groove ball bearings (DGBB) or angular contact ball bearings (ACBB). The new approach described in this paper addresses the latter weaknesses by accounting for the variation of the contact angle on the most loaded ball and also shows that misalignment effects on spherical roller bearing (SRB) loads are negligible. Comparisons between the simplified approach (option 1) and the “enhanced” numerical approach (option 2, which requires a summation of the load components on each ball with the appropriate contact angle included) is made, showing a good correlation as long as the relative misalignment remains reasonable or occurs in the plane corresponding to maximum radial displacement. Option 2 can, however, be recommended since it is easy to program and quite accurate at any misalignment level. Other pros and cons of both options are described. As in the previous paper, a full coupling between all displacements and forces, as well as roller and raceway crown radii, are considered, meaning that Hertzian point contact stiffness is used in roller bearings at low load with a smooth transition toward Hertzian line contact as the load increases. This approach is particularly recommended for programming the rolling element bearing behavior in any finite element analysis or multibody system dynamic tool, since only two nodes are considered: one for the inner race (IR) center, usually connected to a shaft, and another node for the outer race (OR) center, connected to the housing.


2004 ◽  
Vol 10 (6) ◽  
pp. 489-494 ◽  
Author(s):  
David P. Fleming ◽  
J. V. Poplawski

Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for nonlinear speed and load-dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis—Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running five degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller bearings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.


2005 ◽  
Vol 2005 (1) ◽  
pp. 53-59 ◽  
Author(s):  
David P. Fleming ◽  
J. V. Poplawski

Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus, an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work, bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant-stiffness bearings. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guang-Quan Hou ◽  
Chang-Myung Lee

Fault diagnosis and failure prognostics for rolling element bearing are helpful for preventing equipment failure and predicting the remaining useful life (RUL) to avoid catastrophic failure. Spall size is an important fault feature for RUL prediction, and most research work has focused on estimating the fault size under constant speed conditions. However, estimation of the defect width under time-varying speed conditions is still a challenge. In this paper, a method is proposed to solve this problem. To enhance the entry and exit events, the edited cepstrum is used to remove the determined components. The preprocessed signal is resampled from the time domain to the angular domain to eliminate the effect of speed variation and measure the defect size of a rolling element bearing on outer race. Next, the transient impulse components are extracted by local mean decomposition. The entry and exit points when the roller passes over the defect width on the outer race were identified by further processing the extracted signal with time-frequency analysis based on the continuous wavelet transform. The defect size can be calculated with the angle duration, which is measured from the identified entry and exit points. The proposed method was validated experimentally.


Author(s):  
Yimin Shao ◽  
Pei Wang ◽  
Zaigang Chen

Waviness of rolling element bearings, as one of the most concerned factors, would greatly influence the dynamic and acoustic performances of machines. In this paper, a new algorithm of vibro-acoustic coupling, which is based on the displacement mapping method by applying the displacement history obtained from a 6-DOF bearing dynamic model to be as the boundary condition of the finite element model of the bearing housing, is developed to predict the effect of waviness on the vibration and acoustic features of the bearing. The displacement excitation of the circumferential surface of bearing housing can be obtained by vector synthesis of bearing rigid displacement from the 6-DOF bearing dynamic model. This new method enables not only the reduction in computational cost, but also simulation of the bearing waviness under different sizes. A 6308 deep groove ball bearing model with outer race waviness is taken as an example case to examine the effectiveness of the new algorithm. The simulation results show that the new algorithm is able to predict the vibration and acoustic features of the bearing with waviness.


1982 ◽  
Vol 104 (3) ◽  
pp. 283-291 ◽  
Author(s):  
S. H. Loewenthal ◽  
D. W. Moyer ◽  
W. M. Needelman

Fatigue tests were conducted on groups of 65-millimeter bore diameter deep-groove ball bearings in a MIL-L-23699 lubricant under two levels of filtration. In one test series, the oil cleanliness was maintained at an exceptionally high level (better than a class of “00” per NAS 1638) with a 3 micron absolute barrier filter. These tests were intended to determine the “upper limit” in bearing life under the strictest possible lubricant cleanliness conditions. In the tests using a centrifugal oil filter, contaminants of the type found in aircraft engine filters were injected into the filters’ supply line at 125 milligrams per bearing-hour. “Ultra-clean” lubrication produced bearing fatigue lives that were approximately twice that obtained in previous tests with contaminated oil using 3 micron absolute filtration and approximately three times that obtained with 49 micron filtration. It was also observed that the centrifugal oil filter had approximately the same effectiveness as a 30 micron absolute filter in preventing bearing surface damage.


2007 ◽  
Vol 347 ◽  
pp. 265-270
Author(s):  
Jerome Antoni ◽  
Roger Boustany

Rolling-element bearing vibrations are random cyclostationary, that is they exhibit a cyclical behaviour of their statistical properties while the machine is operating. This property is so symptomatic when an incipient fault develops that it can be efficiently exploited for diagnostics. This paper gives a synthetic but comprehensive discussion about this issue. First, the cyclostationarity of bearing signals is proved from a simple phenomenological model. Once this property is established, the question is then addressed of which spectral quantity can adequately characterise such vibration signals. In this respect, the cyclic coherence - and its multi-dimensional extension in the case of multi-sensors measurements -- is shown to be twice optimal: first to evidence the presence of a fault in high levels of background noise, and second to return a relative measure of its severity. These advantages make it an appealing candidate to be used in adverse industrial environments. The use and interpretation of the proposed tool are then illustrated on actual industrial measurements, and a special attention is paid to describe the typical "cyclic spectral signatures" of inner race, outer race, and rolling-element faults.


Author(s):  
A. Liew ◽  
N. S. Feng ◽  
E. J. Hahn

Non-linearity effects in rolling element bearings may arise from the Hertzian contact force deformation relationship, the presence of clearance between the rolling elements and the bearing races, and the bearing to housing clearance. Assuming zero bearing to housing clearance and ignoring rolling element centrifugal load effects, it has been shown in earlier work that Rotor Bearing Systems (RBSs) with deep groove ball bearings can give rise to non-linear behavior such as chaotic motion and jump. This paper extends the bearing model to include rolling element centrifugal load, angular contacts and axial dynamics. The effect of more sophisticated bearing models is illustrated in both a rigidly supported rigid RBS and a flexibly supported flexible RBS, the latter being a model of a test rig designed to simulate an aircraft mounted accessory drive unit. Results are presented on the effect of bearing preload on the unbalance response up to a speed of 18,000 rpm.


2012 ◽  
Vol 19 (4) ◽  
pp. 715-726 ◽  
Author(s):  
Jacek Urbanek ◽  
Tomasz Barszcz ◽  
Tadeusz Uhl

Abstract Wind turbines are nowadays one of the most promising energy sources. Every year, the amount of energy produced from the wind grows steadily. Investors demand turbine manufacturers to produce bigger, more efficient and robust units. These requirements resulted in fast development of condition-monitoring methods. However, significant sizes and varying operational conditions can make diagnostics of the wind turbines very challenging. The paper shows the case study of a wind turbine that had suffered a serious rolling element bearing (REB) fault. The authors compare several methods for early detection of symptoms of the failure. The paper compares standard methods based on spectral analysis and a number of novel methods based on narrowband envelope analysis, kurtosis and cyclostationarity approach. The very important problem of proper configuration of the methods is addressed as well. It is well known that every method requires setting of several parameters. In the industrial practice, configuration should be as standard and simple as possible. The paper discusses configuration parameters of investigated methods and their sensitivity to configuration uncertainties


Sign in / Sign up

Export Citation Format

Share Document