scholarly journals Numerical Simulations for the Wake Prediction of a Marine Propeller in Straight-Ahead Flow and Oblique Flow

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
E. Guilmineau ◽  
G. B. Deng ◽  
A. Leroyer ◽  
P. Queutey ◽  
M. Visonneau ◽  
...  

This paper presents the capability of a numerical code, isis-cfd, based on the solution of the Navier–Stokes equations, for the investigation on the hydrodynamic characteristics of a marine propeller in open water. Two propellers are investigated: the Istituto Nazionale per Studi ed Esperienze di Architectura Navale (INSEAN) E779A model in straight-ahead flow and the Potsdam Propeller Test Case (PPTC) model in oblique flow. The objectives of this study are to establish capabilities of various turbulent closures to predict the wake propeller and to predict the instability processes in the wake if it exists. Two Reynolds-averaged Navier–Stokes (RANS) models are used: the k–ω shear stress transport (SST) of Menter and an anisotropic two-equation explicit algebraic Reynolds stress model (EARSM). A hybrid RANS–large eddy simulation (LES) model is also used. Computational results for global flow quantities are discussed and compared with experimental data. These quantities are in good agreement with the measured data. The hybrid RANS–LES model allows to capture the evolution of the tip vortices. For the INSEAN E779A model, the instability of the wake is only predicted with a hybrid RANS–LES model, and the position of these instabilities is in good agreement with the experimental visualizations.

2017 ◽  
Vol 10 (20) ◽  
pp. 31
Author(s):  
Hassan Ghassemi ◽  
Sohrab Majdfar ◽  
Hamid Forouzan

The purpose of this paper is to calculate the hydrodynamic performance of a ducted propeller (hereafter Duct_P) at oblique flows. e numerical code based on the solution of the Reynolds-averaged Navier– Stokes equations (RANSE) applies to the Kaplan propeller with 19A duct. e shear-stress transport (SST)-k-ω turbulence model is used for the present results. Open-water hydrodynamic results are compared with experimental data showing a relatively acceptable agreement. Two oblique flow angles selected to analyze in this paper are 10 and 20 degrees. Numerical results of the pressure distribution and hydrodynamic performance are presented and discussed. 


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Ron Ryan ◽  
Lee Hedd

State of the art CFD capabilities has enabled the accurate prediction of forces and moments on the propeller as well as on the pod-strut body due to small to moderate azimuthing angles. The capability of CFD to predict the hydrodynamics at extreme azimuthing angles is yet to be demonstrated. The aim of this research is to develop a simulation capability to capture most of the dynamics of podded propulsion systems in regular to extreme operating conditions. The numerical methodologies to evaluate the hydrodynamic characteristics of podded propulsors in puller configurations in extremely oblique inflow and highly loaded condition in open water and the associated results are presented in this paper. A numerical study is carried out to predict the hydrodynamic forces of a podded propulsor unit in various extreme static azimuthing conditions. An unsteady Reynolds-Averaged Navier Stokes (RANS) solver is used to predict the propulsive performance of the podded propulsor system in puller configuration using both steady and unsteady state solutions. To obtain insight into the reliability and accuracy of the results, grid dependency studies are conducted for a podded propulsor in straight-ahead condition. RANS solver simulation technique is first validated against measurements of a puller podded propulsor in straight ahead condition for multiple loading scenarios. The propeller thrust and torque as well as the forces and moments of the pod unit in the three coordinate directions in straight-ahead condition and at static azimuthing angles in the range of −180° to 180° at advance coefficient of 0.20 are then compared with that of the measurements. Additionally, the velocity and pressure distribution on and around the pod-strut-propeller bodies are presented as derived from the RANS predictions. Analysis demonstrates that the RANS solver can predict the performance coefficients of the podded propulsor in extreme azimuthing and in the highly loaded conditions within the same level of accuracy of the same order of magnitude of the experimental results.


Author(s):  
Xi Chen ◽  
Yushen Huang ◽  
Peng Wei ◽  
Zhiguo Zhang ◽  
Fengfu Jin

Simulations of propeller E1619 of two models with different scales are presented using an in-house numerical code based on the solution of the Reynolds averaged Navier-Stokes equations for the purpose of analyzing the scale effect on propellers. Propeller open water performance at given advance coefficient was obtained and compared against experimental data, showing good agreement. In aspect of CFD results, scale effect is not obvious. ITTC’78 Performance Prediction Method is applied to correct both experimental and computational open water performance of model 1. Computational KT of model 2 and corrected KT of model 1 agrees well, but the difference between computational KQ of model 2 and corrected KQ of model 1 is not neglectable. The locations of the tip vortex core of the two models are similar to each other, and so is the pressure and fluid velocity distribution. The absolute value of pressure on the blades of the smaller model is higher than the bigger model. The fluid axial velocity around the smaller model is higher than the bigger model.


Author(s):  
Qin Zhang ◽  
Rajeev K. Jaiman ◽  
Peifeng Ma ◽  
Jing Liu

In this study, the ducted propeller has been numerically investigated under oblique flow, which is crucial and challenging for the design and safe operation of the thruster driven vessel and dynamic positioning (DP) system. A Reynolds-averaged Navier–Stokes (RANS) model has been first evaluated in the quasi-steady investigation on a single ducted propeller operating in open water condition, and then a hybrid RANS/LES model is adapted for the transient sliding mesh computations. A representative test geometry considered here is a marine model thruster, which is discretized with structured hexahedral cells, and the gap between the blade tip and nozzle is carefully meshed to capture the flow dynamics. The computational results are assessed by a systematic grid convergence study and compared with the available experimental data. As a part of the novel contribution, multiple incidence angles from 15 deg to 60 deg have been analyzed with different advance coefficients. The main emphasis has been placed on the hydrodynamic loads that act on the propeller blades and nozzle as well as their variation with different configurations. The results reveal that while the nozzle absorbs much effort from the oblique flow, the imbalance between blades at different positions is still noticeable. Such unbalance flow dynamics on the blades, and the nozzle has a direct implication on the variation of thrust and torque of a marine thruster.


2020 ◽  
Vol 27 (1) ◽  
pp. 6-17
Author(s):  
Hossein Nouroozi ◽  
Hamid Zeraatgar

AbstractPropellers may encounter oblique flow during operation in off-design conditions. Study of this issue is important from the design and ship performance points of view. On the other hand, a propeller operating in oblique flow may sometimes result in a better propulsion efficiency. The main goal of the present study is to provide an insight on the propeller characteristics in the oblique flow condition. In this research, the performance of the DTMB 4419 propeller is studied by the numerical method based on solving Reynolds Averaged Navier–Stokes (RANS) equations in several inflow angles. The sliding mesh approach is used to model the rotary motion of the propeller. Initially, the numerical method is verified by grid and time step dependency analysis at various inflow angles. Additionally, computed results at zero inflow angle are compared with the available experimental data and good agreement is achieved. Finally, the forces and moments acting on the propeller are obtained for 0° to 30° inflow angles. It is concluded that the inflow angle up to 10° has no significant influence on the thrust and torque coefficients as well as the propeller efficiency. However, at high angles up to 30°, the thrust and torque coefficients increase as the inflow angle increases, which may result in a significant improvement of propeller efficiency.


Author(s):  
Haruhisa Honda

Drop generation from a single nozzle is visualized by direct numerical simulations. Navier-Stokes equations are solved on cylindrical axisymmetric coordinates, and interfacial motion is traced by a Front-Tracking method. To validate the numerical code, the numerical results for two modes, dripping and jetting, are compared with experimental results, and they show good agreement. The experimental result that shows a formation of a small satellite, in particular, is successfully visualized. It is shown that the formation of the satellite is due to the strong back flow arising from the large interfacial tension at the cusp behind the primary drop.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2015
Author(s):  
Ren ◽  
Hua ◽  
Ji

When a planing boat sails at the free surface, the posture changes drastically with time, so the surface piercing propellers usually work in oblique flow. In this paper, numerical simulations are performed to predict the performance of PSP-841B with Unsteady Reynolds Averaged Navier–Stokes (URANS) method coupling with sliding mesh and volume of fluid (VOF) method. The results show that the predicted thrust and torque coefficients of PSP-841B are in good agreement with the experimental data. It proves the present numerical schemes are feasible and validated. These schemes are applied in the simulations of SPP-1 that is installed to a planing craft. In oblique flow, the ventilation volume of SPP-1 increases dramatically, resulting in the postponed transition of vented status that changes from the fully dry to partially wetted; at the low advance ratios, the thrust and torque coefficients are less than that in the horizontal case. As the advance speed increases, the vented mode of SPP-1 varies from full ventilation to partially wet, and the forces and moments get closer to the results in the horizontal flow. In addition, the blockage effect of air cavity to the inflow in oblique flow is more significant than the results in the horizontal case.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


Sign in / Sign up

Export Citation Format

Share Document