Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
John W. McClintic ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary D. Webster

In gas turbine engines, film cooling holes are commonly fed with an internal crossflow, the magnitude of which has been shown to have a notable effect on film cooling effectiveness. In Part I of this study, as well as in a few previous studies, the magnitude of internal crossflow velocity was shown to have a substantial effect on film cooling effectiveness of axial shaped holes. There is, however, almost no data available in the literature that shows how internal crossflow affects compound angle shaped film cooling holes. In Part II, film cooling effectiveness, heat transfer coefficient augmentation, and discharge coefficients were measured for a single row of compound angle shaped film cooling holes fed by internal crossflow flowing both in-line and counter to the spanwise direction of coolant injection. The crossflow-to-mainstream velocity ratio was varied from 0.2 to 0.6 and the injection velocity ratio was varied from 0.2 to 1.7. It was found that increasing the magnitude of the crossflow velocity generally caused degradation of the film cooling effectiveness, especially for in-line crossflow. An analysis of jet characteristic parameters demonstrated the importance of crossflow effects relative to the effect of varying the film cooling injection rate. Heat transfer coefficient augmentation was found to be primarily dependent on injection rate, although for in-line crossflow, increasing crossflow velocity significantly increased augmentation for certain conditions.

Author(s):  
John W. McClintic ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary D. Webster

In gas turbine engines, film cooling holes are commonly fed with an internal crossflow, the magnitude of which has been shown to have a notable effect on film cooling effectiveness. In Part I of this study, as well as in a few previous studies, the magnitude of internal crossflow velocity was shown to have a substantial effect on film cooling effectiveness of axial shaped holes. There is, however, almost no data available in the literature that shows how internal crossflow affects compound angle shaped film cooling holes. In Part II, film cooling effectiveness, heat transfer coefficient augmentation, and discharge coefficients were measured for a single row of compound angle shaped film cooling holes fed by internal crossflow flowing both in-line and counter to the span-wise direction of coolant injection. The crossflow-to-mainstream velocity ratio was varied from 0.2–0.6 and the injection velocity ratio was varied from 0.2–1.7. It was found that increasing the magnitude of the crossflow velocity generally caused degradation of the film cooling effectiveness, especially for in-line crossflow. An analysis of jet characteristic parameters demonstrated the importance of crossflow effects relative to the effect of varying the film cooling injection rate. Heat transfer coefficient augmentation was found to be primarily dependent on injection rate, although for in-line crossflow, increasing crossflow velocity significantly increased augmentation for certain conditions.


Author(s):  
Dennis Brauckmann ◽  
Jens von Wolfersdorf

The measurement of adiabatic film cooling effectiveness data and heat transfer coefficient data for a row of fanshaped film cooling holes at different compound angles is presented in this paper. The measurements are performed at engine-like temperature ratios in a hot gas test facility on a flat test plate. For the film cooling geometry, a row of five laidback-fanshaped holes was used. The temperature distribution on the flat plate is measured using infrared-thermography (IR). Steady state measurements are used to obtain the film cooling effectiveness. For the determination of the heat transfer coefficient ratio with and without film cooling on the test plate, a transient measurement technique is applied. Results for both the adiabatic film cooling effectiveness and the heat transfer coefficient ratio are given. The influence of different blowing ratios on the injection with compound angles of 0°, 30° and 45° will be discussed. From this study, the increasing compound angle showed only small effects on the pitch-wise lateral averaged adiabatic film cooling effectiveness but increased the heat transfer on the film cooled flat plate with coolant injection.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
John W. McClintic ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary D. Webster

The effect of feeding shaped film cooling holes with an internal crossflow is not well understood. Previous studies have shown that internal crossflow reduces film cooling effectiveness from axial shaped holes, but little is known about the mechanisms governing this effect. It was recently shown that the crossflow-to-mainstream velocity ratio is important, but only a few of these crossflow velocity ratios have been studied. This effect is of concern because gas turbine blades typically feature internal passages that feed film cooling holes in this manner. In this study, film cooling effectiveness was measured for a single row of axial shaped cooling holes fed by an internal crossflow with crossflow-to-mainstream velocity ratio varying from 0.2 to 0.6 and jet-to-mainstream velocity ratios varying from 0.3 to 1.7. Experiments were conducted in a low speed flat plate facility at coolant-to-mainstream density ratios of 1.2 and 1.8. It was found that film cooling effectiveness was highly sensitive to crossflow velocity at higher injection rates while it was much less sensitive at lower injection rates. Analysis of the jet shape and lateral spreading found that certain jet characteristic parameters scale well with the crossflow-to-coolant jet velocity ratio, demonstrating that the crossflow effect is governed by how coolant enters the film cooling holes.


Author(s):  
Jiang-Tao Bai ◽  
Hui-ren Zhu ◽  
Cun-liang Liu

The film cooling performance downstream of a single row of double-fan-shaped film cooling holes in a flat plate have been investigated by experimental measurements and numerical simulation. The entrance and exit of double-fan-shaped holes are comprised of a lateral expansion of 15° from the original simple cylindrical shape with stream-wise inclination of 45°. The width of the exit face to cylinder diameter ratio is 1.5; the length-to-diameter ratio is 4.24 and the pitch-to-diameter ratio is 3. The experimental method used to obtain the adiabatic film cooling effectiveness values and the heat transfer coefficient is a transient narrow band liquid crystal technique. Both film cooling effectiveness and heat transfer coefficient are measured at three momentum ratios (I = 0.5, 1, 2) at constant Reynolds number (Re = 10000) and free stream turbulence (Tu = 2%). The film cooling effectiveness, heat transfer coefficient and Net Heat Flux Reduction (NHFR) are presented for detailed distribution and span-wise averaged values. Discharge coefficients are also measured in the experiment. A commercial package is used to numerically simulate the flow and heat transfer of double-fan-shaped holes; simple cylindrical holes are also simulated for comparison. Numerical simulation use RNG turbulence model with a standard wall function for near wall region. Experimental and Numerical simulation results show that: 1) the double-fan-shaped holes present higher discharge coefficient than simple cylindrical holes at respective momentum ratio; 2) the numerical simulation film cooling effectiveness results of double-fan-shaped holes accord well with the experimental results; 3) at measured three momentum ratios, the double-fan-shaped holes demonstrate better film cooling performance (higher NHFR) than simple cylindrical holes, better film cooling expansion on span-wise; 4) the best momentum ratio of double-fan-shaped holes is 0.5.


Author(s):  
Diganta Narzary ◽  
Kevin Liu ◽  
Je-Chin Han ◽  
Shantanu Mhetras ◽  
Kenneth Landis

Film-cooling and heat transfer characteristics of a gas turbine blade tip with a suction side rail was investigated in a stationary 3-blade rectilinear cascade. Mounted at the end of a blow-down facility the cascade operated at inlet and exit Mach numbers of 0.29 and 0.75, respectively. The rail was marginally offset from the suction side edge of the tip and extended from the leading to the trailing edge. A total of 17 film-cooling holes were placed along the near-tip pressure side surface and 3 on the near-tip leading edge surface with the objective of providing coolant to the tip. The tip surface itself did not carry any film-cooling holes. Relatively high blowing ratios of 2.0, 3.0, 4.0, and 4.5 and three tip gaps of 0.87%, 1.6%, and 2.3% of blade span made up the test matrix. Pressure sensitive paint (PSP) and Thermo-Chromic Liquid Crystal (TLC) were the experimental techniques employed to measure film-cooling effectiveness and heat transfer coefficient, respectively. Results indicated that when the tip gap was increased, film-cooling effectiveness on the tip surface decreased and heat transfer to the tip surface increased. On the other hand, when the blowing ratio was increased, film effectiveness increased but the effect on heat transfer coefficient was relatively small. The highest heat transfer coefficient levels were found atop the suction side rail, especially in the downstream two-thirds of its length whereas the lowest levels were found on the tip floor in the widest section of the blade.


Author(s):  
John W. McClintic ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary D. Webster

The effect of feeding shaped film cooling holes with an internal crossflow is not well understood. Previous studies have shown internal crossflow reduces film cooling effectiveness from axial shaped holes, but little is known about the mechanisms governing this effect. It was recently shown that the crossflow-to-mainstream velocity ratio is important, but only a few of these crossflow velocity ratios have been studied. This effect is of concern because gas turbine blades typically feature internal passages that feed film cooling holes in this manner. In this study, film cooling effectiveness was measured for a single row of axial shaped cooling holes fed by an internal crossflow with crossflow-to-mainstream velocity ratio varying from 0.2–0.6 and jet-to-mainstream velocity ratios varying from 0.3–1.7. Experiments were conducted in a low speed flat plate facility at coolant-to-mainstream density ratios of 1.2 and 1.8. It was found that film cooling effectiveness was highly sensitive to crossflow velocity at higher injection rates, while it was much less sensitive at lower injection rates. Analysis of the jet shape and lateral spreading found that certain jet characteristic parameters scale well with the crossflow-to-coolant jet velocity ratio, demonstrating that the crossflow effect is governed by how coolant enters the film cooling holes.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo

To investigate the effects of the inclined ribs on internal flow structure in film hole and the film cooling performance on outer surface, experimental and numerical studies are conducted on the effects of rib orientation angle on film cooling of compound cylindrical holes. Three coolant channel cases, including two ribbed cross-flow channels (135° and 45° angled ribs) and the plenum case, are studied under three blowing ratios (0.5, 1.0 and 2.0). 2D contours of film cooling effectiveness as well as heat transfer coefficient were measured by transient liquid crystal measurement technique (TLC). The steady RANS simulations with realizable k-ε turbulence model and enhanced wall treatment were performed. The results show that the spanwise width of film coverage is greatly influenced by the rib orientation angle. The spanwise width of the 45° rib case is obviously larger than that of the 135° rib case under lower blowing ratios. When the blowing ratio is 1.0, the area-averaged cooling effectiveness of the 135° rib case and the 45° rib case are higher than that of the plenum case by 38% and 107%, respectively. With the increase of blowing ratio, the film coverage difference between different rib orientation cases becomes smaller. The 45° rib case also produces higher heat transfer coefficient, which is higher than the 135° rib case by 3.4–8.7% within the studied blowing ratio range. Furthermore, the discharge coefficient of the 45° rib case is the lowest among the three cases. The helical motion of coolant flow is observed in the hole of 45° rib case. The jet divides into two parts after being blown out of the hole due to this motion, which induces strong velocity separation and loss. For the 135° rib case, the vortex in the upper half region of the secondary-flow channel rotates in the same direction with the hole inclination direction, which leads to the straight streamlines and thus results in lower loss and higher discharge coefficient.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Sign in / Sign up

Export Citation Format

Share Document