scholarly journals Three-Dimensional Design Simulations of a High-Energy Density Reshock Experiment at the National Ignition Facility

2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Ping Wang ◽  
Kumar S. Raman ◽  
Stephan A. MacLaren ◽  
Channing M. Huntington ◽  
Sabrina R. Nagel ◽  
...  

We present simulations of a new experimental platform at the National Ignition Facility (NIF) for studying the hydrodynamic instability growth of a high-energy density (HED) fluid interface that undergoes multiple shocks, i.e., is “reshocked.” In these experiments, indirect-drive laser cavities drive strong shocks through an initially solid, planar interface between a high-density plastic and low-density foam, in either one or both directions. The first shock turns the system into an unstable fluid interface with the premachined initial condition that then grows via the Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Backlit X-ray imaging is used to visualize the instability growth at different times. Our main result is that this new HED reshock platform is established and that the initial data confirm the experiment operates in a hydrodynamic regime similar to what simulations predict. The simulations also reveal new types of edge effects that can disturb the experiment at late times and suggest ways to mitigate them.

2017 ◽  
Vol 24 (7) ◽  
pp. 072704 ◽  
Author(s):  
S. R. Nagel ◽  
K. S. Raman ◽  
C. M. Huntington ◽  
S. A. MacLaren ◽  
P. Wang ◽  
...  

2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16879-16885 ◽  
Author(s):  
Ya Wang ◽  
Hui Dou ◽  
Bing Ding ◽  
Jie Wang ◽  
Zhi Chang ◽  
...  

A symmetric capacitor based on facilely synthesized three-dimensional oriented porous carbon nanosheets delivers high energy density.


2016 ◽  
Vol 213 ◽  
pp. 291-297 ◽  
Author(s):  
Dan Liu ◽  
Chaopeng Fu ◽  
Ningshuang Zhang ◽  
Haihui Zhou ◽  
Yafei Kuang

Sign in / Sign up

Export Citation Format

Share Document